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Fourier Series Properties

Property Time Domain  Fourier Domain
Linearity Ax(t)+By(t) Aax+Bby
Time-Domain Shifting  x(r — o) e~ ki gy

Time Reversal x(—t) a—y

Fourier Transform Properties

Property Time Domain Frequency Domain
Linearity aixy (t) -|—(12x2(t) aIXI(w) +a2X2(a))
Time-Domain Shifting x(t —1o) e 10X ()
Frequency-Domain Shifting eI ™ x(t) X(o— ax)
Time/Frequency-Domain Scaling  x(ar) \ETIX (%)
Conjugation x*(r) X*(—)
Duality X (1) 2mx(—)
Time-Domain Convolution x1(t) % x2(2) X1 (0)X2(w)
Frequency-Domain Convolution x1(1)x2 (1) X1 (0) * X (0)
Time-Domain Differentiation %x(l) joX (o)
Frequency-Domain Differentiation  7x(¢) j%X (w)
Time-Domain Integration [t x(7)dt ]in(a)) +7X(0)6(w)
Parseval’s Relation [ k(@) Pde = L 21X (o) do
Fourier Transform Pairs

Pair x(1) X(w)
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2 u(r) 8 (@) + 75

3 1 216 ()
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7 sin oyt Z[6(w— my) — (@ + w)]

8 rect(¢/T) |T|sinc(Tw/2)
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Bilateral Laplace Transform Properties

Property Time Domain Laplace Domain ROC
Linearity axi(t) tarxr(t) a1 Xi(s) +axXo(s) Atleast RiNR,
Time-Domain Shifting x(t—1o) e 0X () R
Laplace-Domain Shifting €' x(1) X(s—s0) R+Re{so}
Time/Laplace-Domain Scaling  x(at) ﬁX (%) aR
Conjugation x*(t) X*(s%) R
Time-Domain Convolution x1(1) % x2(1) X1 (5)Xa(s) Atleast R NRy
Time-Domain Differentiation Lx(t) sX(s) At least R
Laplace-Domain Differentiation — —zx(r) 4x(s) R
Time-Domain Integration [fox(t)dT 1X(s) Atleast RN{Re{s} > 0}
Property

Initial Value Theorem  x(07) = lim sX(s)
s—00

Final Value Theorem  lim x(7) = limsX(s)
t—roo s—0

Unilateral Laplace Transform Properties

Property Time Domain Laplace Domain
Linearity a1x1(t) + axa(t) a1 X1 (s) + a2 Xz (s)
Laplace-Domain Shifting e*0'x(t) X(s—s0)
Time/Laplace-Domain Scaling  x(at), a >0 1x(2)
Conjugation x*(1) X*(s*)
Time-Domain Convolution x1(t) xx2(¢), x1(t) and x(¢) are causal X (s)Xa(s)
Time-Domain Differentiation %x(l) sX(s) —x(07)
Laplace-Domain Differentiation — —zx(t) %X (s)
Time-Domain Integration Jo-x(t)dz 1X(s)

Property

Initial Value Theorem x(07) = lim sX (s)
S—r0

Final Value Theorem  lim x(¢) = limsX (s)
t—oo s—0

Bilateral Laplace Transform Pairs

Pair x(1) X(s) ROC
1 5(1) 1 All s Unilateral Laplace Transform Pairs
2 u(r) 1 Re{s} >0 Pair x(1) X(s)
3 —u(—t) 1 Re{s} <0 1 (1) 1
4 "u(t) 2L Re{s} >0 2 1 5
5 —"u(—t) o Re{s} <0 3 " 2
6 e u(r) H%a Re{s} > —a 4 e u ﬁ
7 —ey(—1) - Re{s} < —a 5 g <‘+”§n+1
8 e u(t) W Re{s} > —a 6 cos @yt bza%
9 — e~ u(—1) ﬁ Re{s} < —a - sin ot Y:j"’z
10 [cos mot]u(t) W Re{s} >0 8 e cosant s ;Z’o
11 [sin @ot]u(t) ﬁ Re{s} >0 I (s+a(z)20+w§
12 [e=%cos mpt]u(t) (s+2)+721w§ Re{s} > —a (s+a)*+w}
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Unit:
Complex Analysis



2

Example A.10. Determine for what values of z the function f(z) = z~ is analytic.

Solution. First, we observe that f is a'polynomial function. Then, we recall that polynomial functions are analytic
everywhere. Therefore, f is‘analytic everywhere.
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Example A.11. Determine for what values of z the function f(z) = 1/z is analytic.

Solution. We can deduce the analyticity properties of f as follows. First, we observe that f is a‘rational function.
Then, we recall that a rational function is analytic everywhere ‘except at points where its denominator polynomial
becomes zero. Since the denominator polynomial of f only becomes zero at O, f is analytic everywhere except at 0.
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Example A.12 (Poles and zeros of a rational function). Find and plot the poles and (finite) zeros of the function

22+ 1D)(z—1)

f)= (z4+1)(2+3z+2) (2 +22+2)

Solution. We observe that f is a rational function, so we can easily determine the poles and zeros of f from its factored
form. We now proceed to'factor f. First, we factor 722+ 3z+2. To do this, we solve for the roots of 72 +3z+2 = 0 to

obtain t or -cm_-[-or by hand

g= 22 321)4(1)(2)%;{1,2}. 2%+ 3z2+2= (2+2)(2+D)

(For additional information on how to find the roots of a quadratic equation, see Section A.16.) So, we have
24+342=(z+1)(z+2). ©
Second, we factor z2 4 2z -+ 2. To do this, we solve for the roots of 72 + 2z + 2 = 0 to obtain
L 24/22-4(1)(2)

— — 4 j={—14j —1—j).
z >0 j={-1+J i}

So, we have
PH2742=(z+1—J)(z+1+]). )
Lastly, we factor z> + 1. Using the well-known factorization for a'sum of squares, we obtain
ZH1=+)E-)) B) Na2ip? = (aes ) (2-3b)
Z Combining the above results, we can rewrite f as
0,0,0 e Pt _ Bz (o) (D)

(z+1)?(z+2)(z+1—=j)(z+1+)) (2+D%(2+2) (&+1 —j)'(z+l+j)’

From this expression, we can trivially deduce that f has:

e first order zeros at 1, j, and —J,

e a second order zero at 0,

e first order poles at —1+ j, —1 —j, —2, and } Srem denominator

e a second order pole at —1.
The zeros and poles of this function are plotted in Figure A.9. In such plots, the poles and zeros are typically denoted
by the symbols “x” and “0”, respectively.
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Figure A.9: Plot of the poles and zeros of f (with their'orders indicated in parentheses).
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Preliminaries



Example 2.2. For two functions x| and x, the expression x| + x; denotes the function that is the sum of the functions
x; and x;. The expression (x; +x2)(¢) denotes the function x; + x, evaluated at 7. Since the addition of functions
can be'defined pointwise (i.e., we can add two functions by adding their values at corresponding pairs of points), the
following relationship always holds:  .dding functions ~ 2dding numbers

(x1 !,&-xz)(t) =x1(t) +x2(¢) forallz.

Similarly, since subtraction, multiplication, and division can also'defined pointwise, the following relationships also
hold:

subtracting functions  subtracting numbers
(x1 ixz)(t) =x(t) —xp(¢) forallz,
multiplying functions % (xlxz)(t) =€ (I)xz (l‘) forall¢, and
dividing functions g (xl /XQ)(I) =X (t)/x2 (I) for all 7. dividing numbers

multiplying numbers

It is important to note, however, that not all mathematical operations involving functions can be defined in a pointwise
manner. That is, some operations fundamentally require that their operands be functions. The convolution operation
(for functions), which will be considered later, is one such example. If some operator, which we denote for illustrative
purposes as “o”, is defined in such a way that it can only be applied to functions, then the expression((x; ¢xz)(f) is
mathematically valid, but the expression x;(z) ©x(¢) is not. The latter expression is not valid since the ¢ operator
requires two functions as operands, but the provided operands x;(¢) and x;(f) are numbers (namely, the values of the
functions x; and x, each evaluated at ¢). Due to issues like this, one must be careful in the use of mathematical notation
related to functions. Otherwise, it is easy to fall into the trap of writing expressions that are ambiguous, contradictory,
or nonsensical. |
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areal variable t,
Example 2.6. For a system operator J, a function x,*and a real constant 7y, the expression Hx(# —1#y) denotes the

result obtained by taking the function y produced as the output of the system J when the input is the function x and
then evaluating y at r — 1.

|
input eutput
71[ 1s @ System, >1H
7'/)( (s the autput of +the sytlem A when the nput (s x.
o s
funtition funttion
% 7‘[)(

-—4——').(——)—.

Since 7‘[)( S 9 -func.'l:l'on) we C2n €evajunite ,‘{- 2t some

po:hb suth 25 t-to-

number

—N
7—/54 (.'[:-bo)
‘_"V‘J (‘_V—‘J
functtion @eint 2t
which .
LQunetion 1€

eva(udted
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Example 2.7. For a system operator 3, function x’, and real number ¢, the expression Hx’(r) denotes result of taking
the function y produced as the output of the system J{ when the input is the function x’ and then evaluating y atz. W

input output
H s 2 system. %

)—/x’ is 1he output of the system H when the inpwt is x'.
| band ’
fuattion funttien
%/ Hx'

Since Hx' s @ funttion , we c2n evaluate t 2¢ 2 peint
suth 2s +.

numéber
——
W x' (4
L — v
funttisn Qoint 24
whieh
funttion is
evaluated
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3.3 Suppose that we have two functions x and y related as
(1) = x(ar —b),

where a and b are real constants and a # 0.
(a) Show that y can be formed by first time shifting x by b and then time scaling the result by a.
(b) Show that y can also be formed by first time scaling x by a and then time shifting the result by 2.

Answer (a). (anifl then sca)e)

Let f denote the result of time shifting x by b. So, by definition, we have

) =x(t—b). @O

o~
When warking with
time tronsformed
tunctions, always Qive
esch tronsfarmed function

> Nname

v\/\/\./

Let g denote the result of time scaling f by a. So, by definition, we have
8(r) = f(at).
Substituting the above formula for f into the equation for g, we obtain

g(t) = f(ar) > substituting @
b)

= x(at —

=y(1).
Therefore, y can be formed in the manner specified in the problem statement.
Answer (b). (gcale then Shift )
Let f denote the result of time scaling x by a. So, by definition, we have

f @) =x(at).
Let g denote the result of time shifting f by g. So, by definition, we have
s)=r(-2).

Substituting the above formula for f into the equation for g, we obtain

gn)=f(-2) ) substituting @
)

~rlalr
= x(at —b)
=y(0).

Therefore, y can be formed in the manner specified in the problem statement.
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Theorem 3.1 (Decomposition of function into even and odd parts). Any arbitrary function x can be uniquely repre-
sented as the sum of the form

x(t) = xe(t) +xo (1), (3.7
where x. and x, are even and odd, respectively, and given by
xe(t) = 3 [x(t) +x(—t)] and (3.8)
Xo(t) = 3 [x(r) —x(—1)]. (3.9)
As a matter of terminology, x. is called the even part of x and is denoted Even{x}, and x, is called the odd part of x

and is denoted Odd{x}.
Partial Proof. From (3.8) and (3.9), we can easily ‘confirm that x. +x, = x as follows:
Xe(1) +x0(t) = B (1) + x(—0)] W A [x(t) — x(—1)]) &—
= 1x(t) + dx(—1) + 1x(t) — $x(—1)
= x(t).
Furthermore, we can easily verify that x. is even and x, is odd. From the definition of x. in (3.8), we have
xe(—1) = 3lx(=1) +x(—[~1])] *— substitute -t for &
= L [x(r) +x(1)] in definytion of Xe
even = xe(1).
Thus, x, is even. From the definition of x, in (3.9), we have
: -4
Xol—t) = ba(—1) —x(—[—])] & Substitute =1 for ¥
in definrtien of Xq

from the definitien
Of Xe 2ad Xq

X1 terms caace)

Thus, x, is odd. odd
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Example 3.2. Let x| (¢) = sin(nt) and x»(¢) = sinz. Determine whether the function y = x| +x; is periodic.

Solution. Denote the fundamental periods of x; and x; as 77 and T3, respectively. We then have
Ti=2 =2 and (B=% =27

Here, we used the fact that the fundamental period of sin(ez) is % Thus, we have

hno_ 2 _(1
L 2n T m
Since 7 is an irrational number, % is not rational. Therefore, y is not periodic. [ |
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Example 3.4. Let x| (¢) = cos(67¢) and x () = sin(307¢). Determine if the function y = x| + x, is periodic, and if it
is, find its fundamental period.

Solution. Let T and T, denote the fundamental periods of x| and x,, respectively. We have

_ 2 (1 _ 2 _ 1
hi=5G =5 ad B=55 =15
Thus, we have

T 1

A=/ =% =§ D Sond 1 are coprime

Since % is arational number, y is'periodic. Let T denote the fundamental period of y. Since 5 and 1 are coprime, we
have

T=1T=5T,=1. [ |

Cross multiplicotian
pattecn (5,9 coprime)
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Example 3.8 (Sifting property example). Evaluate the integral

/_ " sind]8( — x/4)dr.

Solution. Using the sifting property of the unit impulse function, we have
= Sint l

[ Isindét -z =sin(5) =4

S

$ 2 %) § (+-%0) 9t = XU
CANAN

'n this example ; x(4) = Sin t and to= ,i_‘_(_
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daes not have form af Siftvng
progerty due 4o ""4"

in(27t)]6(4¢ — 1)d
/_w[sm( mt)] (:é )dt [SI-Hl'ng 9(‘09u%7

Solution. First, we observe that the integral to be evaluated does not quite have the same form as (3.24). So, we need
to perform a change of variable. Let'T = 4¢ so that's = 7/4 and'dt = dt/4. Performing the change of variable, we
obtain

Example 3.9 (Sifting property example). Evaluate the integral

change of vacrabie

/_ " sin(270)]8 (41 — 1)dr = / " L sin@rr/4]8(c -

—/ stm'/@ (t—1)d

X (.'C)
Now the integral has the desired form, and we can use the sifting property of the unit-impylse function to write

/:o[sin(Zm)] (4 — 1)dt = [§sinfze/2]| _,

- b2

Sifting property

i

§.% %) §(T-4o) 9T = x o)

in this example, X(T)= -5_- sin (I{'c) ond H=!
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Example 3.10. Evaluate the integral [* (724 1)8(t —2)d.

Solution. Using the equivalence property of the delta function given by (3.23), we can write
equivalente orogerty

/_t (12+1)6(‘c—2)d1:/t (224 1)8(z —2)dz

oo

t
:5/ 0(t—2)dt. consider Simplifizatian
<— ot the underhned

Using the defining properties of the delta function given by (3.22), we have that integrs)
! 1 t>2 orer of 1
é(t—2)dt = -
/_m (t-2) {0 1<2 T/ o T=2
=u(t—2). —Co 2 T
Therefore, we conclude that +

[ (12+1)6(r2)d1®

0 <2 =5 5~t&6LT‘27dT
=5u(r—2). u

é(T)

eniire 3rea of 1 regides 3+ origin

T
-0 oo

§°gtr) dt = Ot
o

(where 9 & b-)

QO obhecwise
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Example 3.11 (Rectangular function). Show that the rect function can be expressed in terms of u as
rectt =u(t+4%) —u(t—1).

Solution. Using the definition of u and time-shift transformations, we have

_1 1
u(t+£)={1 272 and u(t—z):{l =

—_

0 otherwise 0 otherwise.

Thus, we have Q.0
0 r<—1 i
2 = 3Y1-0Q
u(d)—ul-H=q1 —d<i<i
0 r>1 r-1
<t<1}

1 -1
_ 2
0 otherwise

= rectz.
Graphically, we have the scenario depicted in Figure 3.24.
wi+d) = a (6-0ED) ue-d) wle+)—u(-3
1 1
1  ——
t t

_1 1 _1 1

2 2 2 2

(a) (b) (©)

Figure 3.24: Representing the rectangular function using unit-step functions. (a) A shifted unit-step function, (b) an-

other shifted unit-step function, and (c) their difference (which is the rectangular function).

recoll ¢ u L¥)

U,L'L'w = I +7/O | F——— coe
0 otherw(se t
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Example 3.12 (Piecewise-linear function). Consider the piecewise-linear function x given by

t 0<r<1

1 1<t<2
x(t) =

3—t 2<t<3

0 otherwise.

Find a single expression for x(¢) (involving unit-step functions) that is valid for all 7.

Solution. A plot of x is shown in'Figure 3.25(a). We consider each segment of the piecewise-linear function separately.
The first segment (i.e., for 0 < ¢ < 1) can be expressed as

vi(t) =t[u(t) —u(®—1))].
This function is plotted in Figure 3.25(b). The'second segment (i.e., for 1 <t < 2) can be expressed as
Vo (t) :['Z(t ~1)—u(t-2)] (1Y)
This function is plotted in Figure 3.25(c). The third segment (i.e., for 2 < ¢t < 3) can be expressed as
v3(t) = (3 — )t —2) — ult - 3)]
This function is plotted in Figure 3.25(d). Now, we observe that x = v + v +v3. That is, we have

x(t) = vi(t) +va(t) +v3(t)
=tlu(t) —u(t—1)]+[ult—1)—ult —2)]+ 3 —1)[u(t —2) —u(t — 3)]
=ru(t)+(1—u(t—1)+GB—t—Du(t—2)+ (t —3)u(t — 3)
=tu(t)+ (1 —)u(t—1)+ (2 —)u(t —2) + (t — 3)u(t — 3).

Thus, we have found a single expression for x(¢) that is valid for all 7.

t
) ute) ~ule-2) Vl(t)
/]
t t t t t
0 1 2 3
(b)
v3(1)
| | N
t t t t — t
0 2 3 0 1 2 3
© (d)

Figure 3.25: Representing a piecewise-linear function using unit-step functions. (a) The function x. (b), (c), and
(d) Three functions whose sum is x.
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Example 3.15 (Ideal amplifier). Determine whether the system J{ is memoryless, where
Hx(t) = Ax(z)
and A is a nonzero real constant.
Solution. Consider the calculation of Hx(¢) at any arbitrary point 7 = fy. We have
Hx(to) = Ax(to).
Thus, Hx(fo) depends on x(¢)‘only for ¢ = #. Therefore, the system is‘memoryless. [

Compute autput
2t thrs peiat

t +

—-00 +00
te

2% whot poasnks must
INnput Be known 7
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Example 3.16 (Ideal integrator). Determine whether the system J{ is memoryless, where

Ix(r) = /_’ x(z)de

Solution. Consider the calculation of Hx(¢) at any arbitrary point ¢ = 7y. We have

To

Hoxlto) = / x()d.

—oo0

Thus, Hx(7y) depends on x(z) for —eo < < 1. So, Hx(1y) is dependent on x(¢ ) for some t # 19 (e.g., 1o — 1). Therefore,
the system has'memory (i.e., is not memoryless). |

consider COmpu.'Ea-E-lor\
at ourput o+ this point

l :

~ oo +o +00

2t what points must
4his fnpu\.'l‘ be knecwn ?
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Example 3.19 (Ideal integrator). Determine whether the system I is causal, where

Ix(r) = /_’ x(z)de

Solution. Consider the calculation of Hx(ty) for arbitrary 7). We have

To

Hoxlto) = / x()d.

—oo0

Thus, we can see that Hx(7p) depends only on x(¢) for —ee <7 <1y. Since all of the values in this interval are'less
than or equal to 79, the system is causal. [ |

consrder campufphon
of output ot this goint

|

-0 4o +00

3t what peints must

fAaput be known ?
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Example 3.20. Determine whether the system J{ is causal, where
+1
Fox(t) = / x(r)dr.
-1
Solution. Consider the calculation of Hx(#) for arbitrary 7). We have
fo+1
Hx(t) = / x(t)dz.
to—1

Thus, we can see that Hx(#y) only depends on x(¢) for 7o — 1 <z < 1o+ 1. Since some of the values in this interval are
greater than 7y (e.g., 7o + 1), the system is'not causal. [ |

Caasider camputation
of autput 21 this goiat

] +

v 4
-Q0 to-1 to ta+t +00

2% which ecints must
fmput be krown ?
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Example 3.23. Determine whether the system J{ is invertible, where

._?g(t) =x(t—1)
and 7y is a real constant. = HY
o / substitute t+te for t

Solution. Lety = Hx. By substituting ¢ + 7o for ¢ in y(¢) = x(¢ — #o), we obtain

y(t+19) = x(t + 10 —to)

= x(t).

Thus, we have shown that

F.,——> x(t) =yt +10).

This, however, is simply the equation of the inverse system H{~!. In particular, we have that
x(1) =3 y(r)
where
H'y(1) = y(t +10).

Thus, we have found H~!. Therefore, the system JH is invertible. [ |
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Example 3.24. Determine whether the system J{ is invertible, where

Hx(t) = sin[x(1)].
Solution. Consider an'input of the form x(z) = 2wk where k is an arbitrary integer. The response Hx to such an input
is given by T ®

Hx(r) = sin[x(r)]
=sin27nk

D Substitute O

=0. sin funttion s zero 2t ail integer
muftipfes of 1T
Thus, we have found an'infinite number of distinct inputs (i.e., x(¢) = 27k for k = 0,+1,+2,...) that all result in the

same output. Therefore, the system is not invertible. |
whot i autput is
put ? o)

—>— Y >

we don't Know ;ﬂpu-{ Could be X(£) =0 ear XU:):ZTT or X(E)S—ZTT Of ose
what ihe tpul s .
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Example 3.27 (Ideal integrator). Determine whether the system I is BIBO stable, where

Ix(r) = /_’ x(z)de

Solution. Suppose that we choose the input x = u (where u denotes the unit-step function). Clearly, u is bounded (i.e.,
lu(t)| <1 for all ¢). Calculating the response Hx to this input, we have

)dt
T‘) U(T) = 0 for T<O
—/dr
(7]t

0
=t.

From this result, however, we can see that as 1 — oo, Hx(¢) — co. Thus, the output Hx is unbounded for the bounded
input x. Therefore, the system is not BIBO stable. |

A system H is S3id ta be BIBO stoble if, for every

bounded function x, Hx is beunded. That is,

12(¥) ¢ A2eo forallt == | HxW)] SB<o forall 1,

To show that a system is not BIBO stable, we simply need to find a counterexample (i.e., an example of a

bounded input that yields an unbounded output).
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Example 3.28 (Squarer). Determine whether the system I is BIBO stable, where

Solution. Suppose that the input x is bounded such that (for all 7)
()| <A,
where A is a finite real constant. Squaring both sides of the inequality, we obtain
lx(1)]> < A2,
Interchanging the order of the squaring and magnitude operations on the left-hand side of the inequality, we have
|x2 ()] < A%,
Using the fact that Hx(z) = x>(¢), we can write
|Fx(r)] < A2

Since A is finite, A is also finite. Thus, we have that Hx is bounded (i.e., |Fx(2)] < A? < o for all £). Therefore, the
system is' BIBO stable. 't_ u
SqQuaring 3 finite numbec aiways Yields 2 f£fnite resy it

N'\f—y\
A system Y s said +o be BIBQ stoble if 4 for every baunded

function X o Hx is bounded. That s,

IX()|SA <o focoll ¢ = Iyl ¢B <o forofl t.

To show a system is BIBO stable, we must show that every bounded input produces a bounded output.
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Example 3.32. Determine whether the system J{ is time invariant, where

e Hx(t) = sinfx(r)]. @
Solution. Letx'(t) = x(t —19), where'fg is an arbitrary real constant. From the definition of J, we can easily deduce
that
equa! for 2]l ¥ Hx(t—19) = sin[x(t—to)]‘/andby substituting d-ta for + 0 Q0
and atl 44 C_> HA () = sinx' (1) &——— feem definstion o H in @
= sin[x(t —t)]. from definition of X' @
Since Hx(t — 1) = Hx'(¢) for all x and 1o, the system is time invariant. [ |

PVaava a2 2 i VS Ve Ve gl e
A system H is 53id e be time invaciant if, Jfor every function%

oand Rvery rcol constant tgq the Hollcwing Conditian hotds:

Hulb-to) = Hy' (4) For 211 4, where x(4) = x (4 -t0)
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Example 3.33. Determine whether the system J{ is time invariant, where

Q Hax(r) = 0dd(x)(r) = 3 [x(t) —x(-1)]. (1)

Solution. Letx/(t) = x(t —1y), where g is an arbitrary real constant. From the definition of J, we have

Hax(t —to) = 3 [x(t —to) —x(—(t —19))] € by substituting +-t, fort 1a (@
not equal = 1[x(t —19) —x(—t+1)] and
§ 4o 7‘-‘ Q H (1) = %[x/(t)—xl(—t)] e——  from de{ivition of U in ®
= 3kt —10) —x(~t=1)). & Fcaem definition of X' n @
Since Hx(t —tg) = Hx'(r) does not hold for all x and 79, the system ismnot time invariant. [ |

1

only eq'u'a‘ if $0=0

T Ve Ve I Ve Ve i e Vg
A System H is saia to be time nvariant f 5 fac every

function X ond every re2) congtzat 4o 4 the -[o”own'ng Condition holds?

2 x (b-4) = HX' (1) for aff 4, where X (&) = x (+-ts).

A A NA N AN A A
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Example 3.35. Determine whether the system J{ is linear, where

@

Solution. Let'x'(t) = a1x1(t) + azx(t), where x1 and x; are arbitrary functions and a; and a; are arbitrary complex
constants. From the definition of HH, we can write

from definiti in @
equal for ayHx (1) + aaHx (1) —Cllt)C]( ) + astxp (¢ )lqla—_' rom definition of 7/ n

2 Xy X‘)_';a() az f}{x’(t) —tx ‘_‘——_—" from definitian 0{ 7-/:0@

=t[aix(t) +axx(t) D from definidion of x'in @

= altxl( )+a2tx2(t).

Since H(a1x) + azxz) = a1 Hx; + a, Hx; for all x1, x2, a1, and ay, the superposition property holds and the system is
linear. u

A gystem ’)-{ 1s S2td 4o be Ifnear ifq for atl funetrons X, and X, ond

Al complex constaats I 206 2, the following Conddion holds*

Hiat+ 22kt = 0K + 3, Hxe
A
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Example 3.36. Determine whether the system I is linear, where

® 3ex(t) = x(t)]. (1)

Solution. Let X' (t) = a1x1(t) + azx(t), where x1 and x; are arbitrary functions and a; and a; are arbitrary complex
constants. From the definition of HH, we have i
from definition af 7‘( in@

ayHxy () +arHoxa (1) = ay |x1 ()| + a2 |x2(t)|” and
HH'(1) = ‘x/(t)} e——————— from definikion O-F 711 in @

= |a1x (1) +axxa(1)]. ; frem definition a{ x' 1n @
At this point, we recall the triangle inequality (i.e., for a,b € C,Ja+b| < |a| + |b|). Thus, H(a1x; +azx2) = a1 Hx; +
a»3Hx; cannot hold for all x;, x, a1, and a; due, in part, to the triangle inequality. For example, this condition fails to
hold for
a; =—1, xl(l‘) =1, a=0, and )C2(t) =0,
in which case Coun 'LQ rexa f\’\)> le
arHxy (t) +arHxp(t) = —1 and HX/'(¢t) = 1.

Therefore, the superposition property does not hold and the system is not linear. |

A System H rs Satd 4a be nineac i.,[7 far 3 functions X, Ind X,

and a\l Compler constants 3 and 3, , the folfawing Conditicn holds*

WUia+0% = o Hx, 33, Hx, - J/
A NN AN AN/
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Example 3.41. Consider the system J{ characterized by the equation
Hx(r) = D*x(r), ®

where D denotes the derivative operator. For each function x given below, determine if x is an eigenfunction of I,
and if it is, find the corresponding eigenvalue.

(a) x(t) = cos2t; and

(b) x(t) =13

Solution. (a) We have from definition of K in @

Hx(r) = D*{cos 2t }(r) ') —é:: cas t = ~sint
=D{-2sin2t}(1) 3 4
= —4cos?2t 'd—'t Sin '& cos ‘l:

= —4x(
Sa, we hove Mx = -4%. Xt ) feem defin'ition of X

Therefore, x is an eigenfunction of H{ with the eigenvalue —4.

(b) We have {com defiation of H in O
Hx(t) = D*{*} (1) 3= 3t
= D{3¢? t:):'t 2= b
e {_____D 3
=8x(1). -me definitien of X

Therefore, x ismot an eigenfunction of . (bt xLt) = 6t XL [ ]
X Lt) 13
not a
constont
ANV VNN
A function x (s 8ard +o be on eigenfunction of the sVsm
with eigenvalue A ¢f §
Hx = 2., 3
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Unit:
CT LTI Systems



Example X.4.1

Let x and h denote functions, and let t denote a real number.

x*h & This expression denotes the function resulting from convolving the function x with the function h.

(x*h)(t) Both of these expressions denote the number resulting from convolving the function x with the function h and then

x * h(t) evaluating the resulting function at the point t.

(x+h)®

/ These expressions have slightly different meanings (i.e., the former is adding functions while the latter is adding numbers),

but they are both valid mathematical expressions and, by definition, they are always equal since the addition of functions is

x(t) +h(t) defined pointwise (i.e., (x+h)(t) = x(t) + h(t)).

X(t) *h(t) & Strictly speaking, this expression is not mathematically valid, as it is attempting to convolve the number x(t) with the
number h(t). Both operands of a convolution operation, however, must be functions. Convolution cannot be defined in a
pointwise manner. In other words, (x*h)(t) does not equal x(t) * h(t) because the latter expression is not even
mathematically valid. Sadly, many engineering textbooks abuse notation in this way, and this often leads to confusion for
students. Sometimes this abused notation x(t) * h(t) is intended to mean x * h; sometimes it might mean x * h(t); and yet

other times it may mean something else entirely (and the reader is simply forced to guess the intended meaning).




Example 4.1. Compute the convolution x % & where

-1 —-1<t<0
x(f)=4¢1 0<t<l1 and h(t) =e "u(t).
0 otherwise

Solution. We begin by plotting the functions x and & as shown in Figures 4.1(a) and (b), respectively. Next, we
proceed to determine the time-reversed and time-shifted version of 4. We can accomplish this in two steps. First,
we time-reverse h(T) to obtain #(—7) as shown in Figure 4.1(c). Second, we time-shift the resulting function by ¢ to
obtain h(r — t) as shown in Figure 4.1(d).

At this point, we are ready to begin considering the computation of the convolution integral. For each possible
value of 7, we must multiply x(7) by h(z — 7) and integrate the resulting product with respect to 7. Due to the form of x
and &, we can break this process into a small number of cases. These cases are represented by the scenarios illustrated
in Figures 4.1(e) to (h).

First, we consider the case of t < —1. From Figure 4.1(e), we can see that

xxh(r) = / X(D)h(t - 7)dT = 0. 4.2)
Second, we consider the case of —1 <t < 0. From Figure 4.1(f), we can see that

xxh(t) = /7 o;x(f)h(tfr)dr: / " etae

—1

!

= —eft/ e'dr
-1

— el

— _eft[et —671]
—e 711, (4.3)

Third, we consider the case of 0 <t < 1. From Figure 4.1(g), we can see that

0

xxh(t) = [ ix(r)h(r—r)drz / et ldT /0 "t

—1

0 t
= fe_'/ er’CJre_t/ etdt
-1 0

=—e"[eF]2 e [effg

=—¢[l—e]+e e —1]

=e e —14¢ —1]

=1+ =2)e. (4.4)

Fourth, we consider the case of # > 1. From Figure 4.1(h), we can see that

oo 0 1
xxh(t) :/ x(T)h(t —1)dT = / —erftd‘H—/ eFldr
o 0

~1
0 1
= —eft/ erd‘c—i—e*t/ etdr
J-1 Jo
=—e7"le"]|% +e"[ef]l
=e e —14e—1]
=(e—24e e, 4.5)
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Combining the results of (4.2), (4.3), (4.4), and (4.5), we have that

0

e 711
xxh(t) = (e —=2)e " +1

(e—2+e e

The convolution result x x 4 is plotted in Figure 4.1(1).

Copyright (©) 2012-2020 Michael D. Adams

r<—1
—-1<tr<0
0<r<1
1<rt.
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<o x(7)
f | ] 5
h(t—1) ,'iu
%
T t —1 1 !
*(0) x¢h(t) =0
1 -1
-1g£<Q ©
T x(1)
—1 1 T-t /
€ h(t—1) ,i :
A\
- L ! )
-1 1
T-
— =gl odr+f (e "7dT
-]
) + St 0dT
< - -
©ster =5l ene™tat
eT-‘t ] ,ﬁ/
h(t—1) I’:
) AN .
(b) time ‘ = 01 et
reverss X% h 14) = S_"‘ -Ne  "dT
h(=7) -
9]
. 1 ‘b>/‘ g
timne T-% x(7)
\ shift e 1 L

,'E h(t—1)

xenwy=J° et tar

+ft (neTtar

Figure 4.1: Evaluation of the convolution x . (a) The function x; (b) the function /; plots of (¢) #(—7) and (d) h(t — 1)
versus 7; the functions associated with the product in the convolution integral for (e) t < —1, (f) —1 <71 <0, (g) 0 <

t < 1,and (h) r > 1; and (i) the convolution result x x /.
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Answer (u).

We need to compute x i, where | % % h ) = S_oooo X(T)h (¢- T) dT

2—1t 1<t<?2 —t—-2 -3<r<-2
x(1) = SIS2 and B = SIS
0 otherwise 0 otherwise.

First, we plot x(7) and h(r — 7) versus 7 in Figures (a) and (d), respectively.

Figure (e): +<-2
X¥h(t) =0 %0 hLT)
~-T+2 = 2-T -T-2
Figure (f): ~2 € £ <~ | | N N |
th(t) L \ T ‘ .t _ T
- S‘+3 (2-T) (T-4-2) dT v. = Lime = <2 -
(2) revecs-e (b)
Figure (g): —1< £<0 whety hiE-T
XK :m T2 +ime Sheft - (e -2 S
= § ey (27 T(T-4-2) 4T \/\ by t s ’\/l
: . T N 4 gl
\ 2 3 £+2  t+3
Figure (h): tZ O © 2dd ¢
- ¢ (d)
xxh(t) =0 3dd 1
This leads to four cases to consider as shown below. inte 9rand (s
integronad 1S 0 T-t-2 e nonzero for
| N_  foran T NG < 1< T e+l
— | N\, - T Z1 X
++2 113 3 1 2 \ i 2 uq.J% '€f+3<2 ’T
£+3<1 (@ “l
1nteq rand is 2T T-+-2 imtegrand s O
nonzero for /? ( foroll T |
tt2< T<L2 SN . WIS A T
| z e T t 2&/&42 1+3
A
- (h) ts232 2

() 1gt+2<2

From Figure (e), fort < —2 (i.e., t +3 < 1), we have
xxh(t) =0.

From Figure (f), for =2 <7 < —1 (i.e.,, 1 <r+3 < 2), we have
t+3
xxh(t) = / (2-1)(T-1-2)dr.

———
_ ' XCL) h (+-T)
From Figure (g), for =1 <7 <0 (i.e., 1 <t+2 < 2), we have

2

xxh(t) = / 2-1)(t—t—2)dr.
¢ -

From Figure (h), forz > 0 (i.e., 142 >2), we have X(T) hix-T)

x*h(t) =0.
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Simplifying, we obtain

-2 2<r<-1
xxh(t) =< -1 —1<t<0
0 otherwise.

Copyright (©) 2012-2020 Michael D. Adams

Edition 2020-04-01




Theorem 4.1 (Commutativity of convolution). Convolution is commutative. That is, for any two functions x and h,
xxh=hxx. (4.16)

In other words, the result of a convolution is not affected by the order of its operands.

Proof. We now provide a proof of the commutative property stated above. To begin, we expand the left-hand side
of (4.16) as follows: fram definition of convelutiaa

xeh(t)= [ x(@hir— 7)de. hxx () = 5720 b x(+-T) dT

v
Next, we perform a change of variable. Let v = ¢ — T which implies that'T = ¢ — v and d7T = —dv. Using this change
of variable, we can rewrite the previous equation as

2 frem change O—f verrab e
v

wih(t) = [ x(t—v)h(v)(—dv)
/t°° ) ,'n-rlnl.'l'y dominaies Sums

Remember that chonging

integeodion yaciable ©(t = v)h(v)

chonges 11mts ! Y . D faotors
20 .
w\/\/ / t—v dv rearerdnge (]
— hx Jde{'m*l-u.\n of convolution

(Note that, above, we used the fact that, for any function f, [ f f(x)dx = — [} f(x)dx.) Thus, we have proven that
convolution is commutative. |
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Theorem 4.5 (LTI systems and convolution). A LTI system I with impulse response h is such that
Hx=xx*h.

In other words, a LTI system computes a convolution. In particular, the output of the system is given by the convolution
of the input and impulse response.

Proof. Using the fact that § is the convolutional identity, we can write
convolutional identity

560 = H 2w 5} 1),

rewrite canvolution

Rewriting the convolution in terms of an integral, we have .
9s integqral

J —oo

Hox(t) = J{{/w X(0)8(-— r)dr} (0).

Since K is a linear operator, we can pull the integral and x(7) (which is a constantjwith respect to the operation
performed by H) outside H to obtain interchange % with both

XCT) 2nd integral
U.‘ne.'arﬁ:\,)

Hox(r) = /:ox(r)?({é(-—r)}(t)dr

Since X is time invariant, we can interchange the order of J and the time]shift of 6 by 7 (i.e., H{é(- — 1)} =

Hé(-— 1)) and th the fact that 7 = 3§ to obtai
(+— 1)) and then use the fact tha 0 obtain sntecchange 7/ Shift by T
oo ond time shift th Y
M then Hx(t) = / T)HO(t — 1)dt (time (avaciance) tn
shift by T
i+t by _/ h(t — 1) dTL) HE (by definrtion)
=xxh(t).
Thus, we have shown that Hx = x * h, where h = H6. [ |

Edition 2020-05-17 Copyright (©) 2012-2020 Michael D. Adams




Example 4.5. Consider a LTI system J{ with impulse response
h(t) = u(t). (4.23)

Show that J{ is characterized by the equation

1
Hox(1) = / X(v)dt (4.24)
(i.e., H corresponds to an ideal integrator).
Solution. Since the system is LTI, we have that
Hx(t) =xxh(r). @)
Substituting (4.23) into the preceding equation, and simplifying we obtain

_ 4 frem O]
e D substitute given funtiion h
=xx*u(t)

oo ) dediniti Convoiuti
:/ x(t)u(t—1)dr artion of o en
f/ ult—rt dr+/ u D Selit into

two integrals

_/ Second indeqra} /s O
Therefore, the system with the impulse response & given by (4.23) is, in fact, the ideal integrator given by (4.24). W
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Example 4.7. Consider the system with input x, output y, and impulse response / as shown in'Figure 4.9. Each
subsystem in the block diagram is LTI and labelled with its impulse response. Find A.

Solution. From the left half of the block diagram, we can write To begin, we label all signals in Figure 4.9.

@ v(t) =x(t) +xxhy(t) +xxhy(t ) g {S Coavolution2] ld'en'h\'y

=x*6()+x*h, +x*h2
:(x*[5+h1+h2])( ). distributive Propc‘,*y

Similarly, from the'right half of the block diagram, we can write

¥y =ves(r). @
Substituting the expression for v into the preceding equation we obtain

y(t) :V*h3(t)fﬂ% substituting @
= (x %[0+ hy + ha]) * h3(¢) 2

fer v
=X [h3 +hy xhy+hy * h3}(tD distributive and 2SSocidtive
Lﬂ-—-——-—J

. . Properties ond
Thus, the impulse response & of the overall system is h Convolutione! ideatity

h(t)=h3(t)—|—h1*h3(t)+h2*h3(t). [ |
X

- v h
X hy 3
Recall that, for any LTI system with input x, X -\ v { y
: - . h —— b =

output y, and impulse response h, y =x * h.

A_ X¥h,

Figure 4.9: System interconnection example.
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Example 4.8. Consider the LTI system with the impulse response / given by
h(t)=e “u(t),
where a is a real constant. Determine whether this system has memory.

Solution. The system has memory since'h(r) # 0 for some # £ 0 (e.g., h(1) = e~ #0). [ |

L Cctndl‘l:l'on -for mcMopVICSS ness VI.G['&%:A

hL® o

mMmemocy lesg &S h)=0 for al} +#0
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Example 4.9. Consider the LTI system with the impulse response / given by

Determine whether this system has memory.

Solution. Clearly, h is only nonzero at the origin. This follows immediately from the definition of the unit-impulse
function 8. Therefore, the system is memoryless (i.e., does not have memory). |

S

f'\/'\/‘\f\/\/\/'\"\f'\/\"\f\/-]j
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Example 4.10. Consider the LTI system with impulse response & given by
h(t)=e “u(t),
where a is a real constant. Determine whether this system is causal.
Solution. Clearly, h(z) = 0 for t < 0 (due to the u(r) factor in the expression for A(r)). Therefore, the system is

causal. |
T this is rue regardiess of a

hit) VY aVa'atava e e
Causa|] & hit) =0 far ol 4<0

\./\./\)\-A.J—)
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Example 4.11. Consider the LTI system with impulse response & given by

r+°>o h(t) = &(t +19),

where 19 is a'strictly positive real constant. Determine whether this system is causal.

Solution. From the definition of §, we can easily deduce that () = 0 except at = —fy. Since —fp < 0, the system is
not causal. n

h+)
NN

/l\' cousal : hl) =g for all +<Q

"":O
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Example 4.12. Consider the LTI system J{ with impulse response / given by
h(t) = Ad(t —10),

where A and 1y are real constants and A # 0. Determine if J is invertible, and if it is, find the impulse response 4;,, of
the system J{~!.

Solution. If the system H! exists, its impulse response Ay, is given by the solution to the equation

H is invectible § ond only if

hxhiny = 8. 3 saution for hiq, exists

(4.34)

So, let us attempt to solve this equation for /;,,. Substituting the given function % into (4.34) and using straightforward
algebraic manipulation, we can write

ok hiny (1) = 8(1) ) definition of convolutien
= /jo h(T)hinv(t_ )d 3(t)

T)dT =

oo > Substitute 9iven function h
= /Aa(r—m)hinv(t—r)m:a()

t

°° D divide both sfdes B
- [W8(T—to)hinv(t—1)d1:%S(t). y

A#0
Using the'sifting property of the unit-impulse function, we can simplify the integral expression in the preceding
equation to obtain hinv (£-T) l Tedg = %’ dx) J sitting property
B (t —t9) = +8(2). (4.35)

Substituting 7 47y for ¢ in the preceding equation yields

B ([t +10] —t0) = +8(t +19) &

: -1 é——r impulsc respansc of
h'”"(t) A5(t+t0)‘ tnuerse System

Since A # 0, the function /;y, is always well defined. Thus, 3{~!‘exists and consequently J{ is'invertible. |
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Example 4.14. Consider the LTI system with impulse response & given by
h(t) = e u(t),
where a is a real constant. Determine for what values of a the system is BIBO stable.

Solution. We need to determine for what values of a the impulse response / is absolutely integrable. We have

[w|h(t>|d’:/ |dt Spiit integration interval
y Snd use fact thet
—/ 0dt+/ dt ud = (! +t20
O atherwise
7/ atdt

drog Teco ntegral

_ Jo emdt a#0 idenif-ﬁy two Coges for
Jooldt  a=0 integmtica

_ [1e] |:)O a#0 ) integrote
[tllo a=0.

Now, we simplify the preceding equation for each of the cases a # 0 and a = 0. Suppose that a = 0. We have

[ molar = [Le];

1 o0
=2 (e —1).
We can see that the result of the above integration is finite if @ < 0 and infinite if @ > 0. In particular, if a < 0, we have

[ eiar=o- J Peswming 340

Suppose now that a = 0. In this case, we have

Thus, we have shown that Combinrn q dbav<
N L a0 results
-1 qa
[ no1ar= { ‘
oo oo a>0.

In other words, the impulse response # is absolutely integrable if and only if @ < 0. Consequently, the system is'BIBO
stable if and only if @ < 0. |
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Example 4.15. Consider the LTI system with input x and output y defined by

)= [ xtmar ©

(i.e., an ideal integrator). Determine whether this system is BIBO stable.

Solution. First, we find the impulse response £ of the system. We have

. Using O ana h="HS§
[ o(t)dr /

D integral is 1 if fniegration
_{1 t>0

interval includes arrgin
0 <0

definition of unit-steg function
=u(r).

Using this expression for 4, we now check to see if / is absolutely integrable. We have

Q

/Zlh(rndr:/]u(rnc? uy= {1 t320

o3herw15¢

Thus, 4 is'not absolutely integrable. Therefore, the system is not BIBO stable.

|
(D)
J[ ]
T
0
—>

0O 1:>
20 ;
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Theorem 4.12 (Eigenfunctions of LTI systems). For an arbitrary LTI system I with impulse response h and a
function of the form x(t) = e, where s is an arbitrary complex constant (i.e., x is an arbitrary complex exponential),
the following holds:

where
= / h(T)e *"dr. (4.49)
That is, x is an eigenfunction of H with the corresponding eigenvalue H(s).

Proof. We have

f}{x(t):x*h()—p Commutative progerty af Convoludion
=hx*x(t)

? definition of Coavoluiion
7/ h(T)x

Substitute 9rven function X

_/h &S ar

:) factor out €
—e/ h(t)e *"dt

= H(s)e n

st
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Suppose that we have a' LTI system 3 with input x, output y, impulse response /, and system function H. Suppose
now that we can express some arbitrary input signal x as a'sum of complex exponentials as follows:

x(t) = gakeskt. o

(As it turns out, many functions can be expressed in this way.) From the eigenfunction properties of LTI systems, the
response of the system to the input aze®' is a;H (sg)e*’. By using this knowledge and the superposition property, we
can write

y(t) = Hx() substitute O for x
— Skt
J{{Zk"ake }(t)) finearity of H
= Zakﬂf{eskt}(z‘)
k campilex exponentials ace

=Y aH(sp)e™. eigenfunctions of LTI systems
%

Thus, we have that

(4.48)

Thus, if an input to a LTI system can be represented as a linear combination of complex exponentials, the output
can also be represented as linear combination of the same complex exponentials. Furthermore, observe that the
relationship between the input x(r) = ¥, are®*’ and output y in (4.48) does not involve convolution (such as in the
equation’y = xxh). In fact, the formula for y is identical to that for x except for the insertion of a constant multiplicative
factor H(s). In effect, we have used eigenfunctions to replace convolution with the much simpler operation of
multiplication by a constant.
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Example 4.16. Consider the LTI system J{ with the impulse response / given by
h(t)=6(r—1).

(a) Find the system function H of the system J{. (b) Use the system function H to determine the response y of the
system J{ to the particular input x given by

x(t) = €' cos(mt).

Solution. (a) We find the system function H using (4.49). Substituting the given function / into (4.49), we obtain

H(s):/:oh(t)e_“dt <« (4.49)

_ Stftin ro pert
st] |t:1 / fting Prop Y
=e .
(b) We can rewrite x to obtain

x(t) = €' cos(mt) Euter
3 (@ e )]
e(1+j7r)t + %e(lfﬂr)t.

I
Y

exponent cules

0=

So, the input x is now expressed in the form

1
x(r) = Z aie’™
k=0
where

1+jr k=0

1
ar,=5 and s, =
kT2 g {1—]'7: k=1.

Now, we use H and the'eigenfunction properties of LTI systems to find y. Calculating y, we have

Hi{ageSxt(x) = ¢ Hisw) ekt

1
y(t) = Z akH(Sk)eskt e |
k=0 exgoand Summationr
= aogH (s0)e’ +aiH(sy)e' ‘————>
j ; substitute for 2 S
— LH(1+ jm)e ™ L (1 jm)el=imr ‘ K > SK
= %e7(1+jﬂ)e(1+jﬂ)l_’_%ef(lfjn')e(lfjﬂ;)[ evaliwdte HL"‘)

_ %81*14’]7[[*]7[ + %etflfjﬂ.'l+jﬂ'
— %etfle]ﬂ(tfl) + %etflefjﬂ(tfl) rearr‘ang-e

— ! [1 (ejﬂ(tfl)_i_efjn(tfl))}

2
:et_lcos[ﬂf(t—l)]. J Euler

Observe that the output y is just the input x time shifted by 1. This is not a coincidence because, as it turns out, a LTI
system with the system function H(s) = e~ is an ideal unit delay (i.e., a system that performs a time shiftof 1). W

NOTE: THIS SOLUTION DID NOT REQUIRE THE COMPUTATION OF A CONVOLUTION!
THIS IS THE POWER OF EIGENFUNCTIONS!
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Interlude



Interlude

1) LTI systems are relatively simple mathematically and are

extremely useful in practice (e.g., for modelling real-world systems).
2) LTI systems, while relatively simpler, involve convolution.

3) Are we doomed to directly face convolution in every problem we

solve that involves LTI systems?

4) Often, there 1s a better way. Employ transform-based solution
techniques that utilize mathematical tools such as:

CT Fourier series

CT Fourier transform

Laplace transform



Unit:
CT Fourier Series



Example 5.1 (Fourier series of a periodic square wave). Find the Fourier series representation of the periodic square
wave x shown inFigure 5.1.

x(t)

A  —

|
ﬂ
|
STl
(STl
rﬂ

,A<

Vv

T

Figure 5.1: Periodic square wave.

Solution. Let us consider the single period of x(¢) for 0 <t < T. For this range of 7, we have

Letwy = 27” From the Fourier series analysis equation, we have

¢— Fourier sectes 2narysss equation

= %/Tx(t)e_jkmotdt

T/2 T 5 Split \nto 2 integears Ond
=1 (/ Ae— Ikt gy 4 (A)e‘/k“’otdt> Substitute given X
T\ Jo /2
2 .

l [_Aejkwot] T/ + |:ejkwoz:| ’ k£0 Iﬂ'&égf‘a{-e
T\ [Jjkay 0 Jkay /2 @

1 2

= (g7 + [-adi7 ) k=0,

Now, we simplify the expression for ¢; for each of the cases k # 0 and k = 0 in turn. First, suppose that k = 0. We

have
‘) {rorm @ obove
T
ck:l {.Aejkwot]

T\ Ljkao /2
_A , , T

- _ —jkoyt —jkoot ond Tw, = 277
J2mk ([e } [e } T/2> °

_ﬂ([ —jmk }_{71'271%_ 7j7rk})
=2k e 1 e e

o y
= 2 [ = e -]

T2
—l—[ A ejkw(”}
0 Jkax

T2

factoar out Constant

0
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@

Now, we observe that'e 4% = —1 and'e /2% = 1. So, we have 2 -Fr‘cm @
JA k_ gk
2(—=1)F—1%—1
o= 2o (-1t 1 ]
_JA k .
—ﬁ[z(—l) —2] S:mpi"Fy
JA k
=Lk
D 1] ’v (’nk_ | = {—2 X add
L O kever
= wk
0 k even, k #£ 0.

Now, suppose that k£ = 0. We have

/ -Ff‘orn O above

T/2 |
co=1 (1arlg”*+ [-arF )
_ 1 [AT _ AT
=77 - 7} i
=0. Simplify
Thus, the Fourier series of x is given by
) = i cpel@mIT
k=—o0
where
—j2A
“I22 kodd
Cr = wk
0 k even. [
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Example 5.3. Consider the periodic function x with fundamental period 7 = 3 as shown in Figure 5.3. Find the
Fourier series representation of x.

Solunon The function x has the fundamental frequency @y = 2
§ iz L (1.e.,

x(1)

o
e —
P— —

~

7¢ -3 !2:.l71 Ezi 3
—1 _:—1 ;—1
- s
T

Figure 5.3: Periodic impulse train.

2L — 2% Let us consider the single period of x(r) for

3 5<t< 2). From the Fourier series analy51s equation, we have
¢— Fourier series aa»rysrs equa tien

= %/x(t)eijkwo’dt
T consider interval [-r/z,-r/a)

S
=3 —j(2m/3)kt
3/_3/2X(t)e dt -—ﬁ cubsiitute given X
3/2 |
%/3/2[_6(I+1)+6(I—1)]e_/(27t/3)ktdt -—% B
7 SPU'L tnto
_ 1 |:/3/2 2717/3 k[dt l.n'tegr)ls

5(t+1)€ ]Zn/Sktdt_’_/
3/2 extend Iimits and

- % [ o Ik27/3)(=1) | —jk(2m/3)(1 3pply sifting
1 [e j(2ﬂ/3)k_ej(2ﬂ/3)} GJ Simphify preperty
JG "JG
= % [2jsin (—%”k)] Eulecr [Sm 8= 'Zj ):I
= ¥ sin (- Zk) o/ simpiify
S8in iS odd

= —Zgin (zlk) .

Thus, x has the Fourier series representation

Edition 2020-04-01

x(t)="Y crelket
k= —oo

= i —%sm(%"k) oJm/3)k n
k=—co
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Example 5.6. Consider the periodic function x with'period 7" = 2 as shown in Figure 5.4. Let £ denote the Fourier
series representation of x (i.e., £(t) = Y5 cxe/™', where @y = 7). Determine the values £(0) and £(1).

x(t) . xtoh =1
(xll‘)=l

" xta")=0

—1
theerern for

Figure 5.4: Periodic function x. Function sat 15fying
Birichret canditions
Solution. We begin by observing that xsatisfies the Dirichlet conditions. Consequently, Theorem 5.4 applies. Thus,
we have that

c— dverage of teft ond right

£(0) = 5 [x(07) +x(0")] ks
=3(0+1)
:% and
(1) =24 [x(17)+x(1T)] & 3veraqe of 1eft ana croht
_ %(lJrO) Weni s
=1 |
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Suppose that we have a complex periodic function x with period 7" and Fourier series coefficient sequence c. One
can easily show that the coefficient ¢ is the average value of x over a single period 7. The proof is trivial. Consider
the Fourier series analysis equation given by (5.2). Substituting k = 0 into this equation, we obtain

co= [}/Tx(t)ejkw“tdt]
%/Tx(t)eodt Cvaiuate 2t kK=Q

:%/Tx(t)dt. ) e® = |

Thus, ¢ is simply the‘average value of x over a single period.

H-from Fourier Se€cies 2n9lySs;s
k=0 €quotion
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Example 5.7. The periodic square wave x in Example 5.1 has fundamental period 7', fundamental frequency @y, and
the Fourier series coefficient sequence given by

—j2A
= /Tk k odd
0 k even,

where'A is a positive constant. Find and plot the magnitude and phase spectra of x. Determine at what frequency (or
frequencies) x has the most information.

Solution. First, we compute the magnitude spectrum of x, which is given by |ci|. We have

“ { _ﬁA‘ o A1 _ [-)2A| A
K= - = ' = 24
02A k even ﬁl ——_‘Im:l oyl
= {”k kodd Sinte }a/bl = 1a(/1b] and)
0 k even. l?b|= “3”H

Next, we compute the ‘phase spectrum of x, which is given by argci. Using the fact that arg0) = 0 and arg

- k
—3sgn k, we have

T

oo (28 5
K arg —L=  kodd ; ‘2A]
@ K<o{ where 47 arng:{angEk k even see © -FOI" 3P9[J(‘Tr—,<)
Tr/z
M Re T kodd, k<0
k>0 l)-n/z =49 -7 kodd, k>0
0  keven ) Sgn k= K29
o -
) —%segnk kodd -1 ';;g
1o k even.

The magnitude and phase spectra of x are plotted in Figures 5.7(a) and (b), respectively. Note that the magnitude
spectrum is an even function, while the phase spectrum is an odd function. This is what we should expect, since x
is real. Since |c| is largest for k = —1 and k = 1, the function x has the most information at frequencies —@p and
. [
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|ex| mognitude Sgectrum

s e Jew] is largest for

kK=-1 (~wo) 2and K=1 (wg)

« {Ck| is even Since
X is rea)
4wy —3wp —2mp —ap 0 w 2wy 3wy 4oy
K=-% k=-3 Ks-2 K=~ KIO oy K=z K=3 k=4
(a)
argcy
phase Spectrum
T
zs

- 309 Ck is odd Since
X s red|

—dwy 3wy 2wy —wy =°| @y | 2wy 3ap| 4wy

K=~4 K=-3 K=-2 K=-| K=t k=2 k=3 k=4

SE

(b)

Figure 5.7: Frequency spectrum of the periodic square wave. (a) Magnitude spectrum and (b) phase spectrum.
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Example 5.9. Consider a LTI system with the frequency response
H(w) = e 10/,
Find the response y of the system to the input x, where

x(t) = L cos(2mt). ‘5 ‘a
Euler [cqs 8=42(e%+e™ )]

Solution. To begin, we rewrite x as
x(t) = %(efzm + 67]2m)_
Thus, the Fourier series for x is given by

x(t) = Z crek !
k=—co

where @y = 27 and Fourier sefies with
oniy two nontzero t€rms

Thus, we can write
o0 . feom eigenfunction Progecties

Of LTI SysternsS
=c | H(—m)e /" 4 ¢ H(wp)e/™' exgand Summoation
= 1H(-2m)e ™ + LH(2m)e/*™ Substiture for C.,, C,) Wy
= Leim/2g=i2mt | 1 p=im/2,im evoruate HC(...)
_ [ Sem-nf2) y gilem-n/2) / Combine exgonentiols

% (2cos(2mt — %))

CO

? s(2mt — %) express In terms °‘F CoeSs
= jcos (2m[t—4]). (Euter)

Observe that y(f) = x (t — %) This is not a coincidence because, as it turns out, a LTI system with the frequency

response H () = e~®/* is an ideal delay of % (i.e., a system that performs a time shift of %). |

NOTE: THE APPROACH USED IN THE SOLUTION TO THIS PROBLEM DID NOT REQUIRE CONVOLUTION!
THIS IS THE POWER OF EIGENFUNCTIONS!
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Example 5.10 (Lowpass filtering). Suppose that we have a LTI system with input x, output y, and frequency response

H , Where Hlw)

H(a)):{l |o| <3n 1

0 otherwise.

Further, suppose that the input x is the periodic function -3m 3T
x(t) = 1 +2cos(27t) +cos(4mt) + 1 cos(6mt).

(a) Find the Fourier series representation of x. (b) Use this representation in order to find the response y of the system

to the input x. (c) Plot the frequency spectra of x and y. don't use Fourier seties Inalysis equalien !

Solution. (a) We begin by finding the Fourier series representation of x. ‘Using Euler’s formula, we can re-express x
as

x(t) = 1 +2cos(27t) +cos(4mt) + 1 cos(6mt) ——

_ 1_|_2[ (612”t+67j2”t)} + [%(ej4m_|_efj4m)] + 1 [ (e]6m+€7j6m)}

— | 4 f2M o 2m %[ej4m +e—j4ﬂt] +%[ej6m +e—j6nt] Stmplify and rearder decms

— %efj6n1+%e—j4nt+efj2nt+ 1 +ej2nt+%ej4m+%ej6m

= Lei(@R | Loi(-2)@m) | i(-DCR) | JO)Cm  pi(1)Em g Loi@)em) | L j<3>(zD
A___V____a .__,_V_____, L__,___, ._._V_J

Euler

rewrtte
Chocnentials 3s

v

K= 1 j Kw
From the last line of the precedlng equatlon we deduce that (1)() = 27, since a larger value for (1)() “would imply that rwe
some Fourier series coefficient indices are noninteger, which clearly makes no sense. Thus, we have that the Fourier
series of x is given by

x(t) = i age’* "

k=—o0
where @y = 27 and
1 k=0
1 ke{-1,1}
a=1< % ke{-2,2}
I ke{-3,3}

0 otherwise.
(b) Since the system is LTI, we know that the output y has the form (d ve to € rgcn{un Ction
rogerties LT) systems
Z brel*@" proe ot Y m )

k=—oo

where

bk = akH(k(JJQ).
Using the results from above, we can calculate the by, as follows:
o) bo = aoH ([0][27]) = 1(1)
kwo) =1 by =aiH([1][27]) = 1(1) = ;
by =aH([-1][27]) =1 e e e [
b2 =t (22 = 3(0) =0, Rl P
ba—a sH(~227]) = L(0) =0, e
by = azH([3][27]) = 1(0) =0, and
b_3 =a_3H([-3][27]) = £(0) = 0.

H(kwo)=0
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Thus, we have

- {1 ke{—1,01}

10 otherwise.

(c) Lastly, we plot the frequency spectra of x and y in Figures 5.10(a) and (b), respectively. The frequency response
H is superimposed on the plot of the frequency spectrum of x for illustrative purposes.

|
T | Wwao = 21T
|
|
: [0
—6nr —4n —2m O 2 4rn 61
by = 3k H (kwg) o e o) G ) o) G2
by
1
Wg =2

D=

. . . . [0)
—6nr —4n —2m O 2 4 61
(-3we) (~2wg) L-wo) (Ol\;») Cwo)  L2we)  (3uwg)

Figure 5.10: Frequency spectra of the (a) input function x and (b) output function y.

NOTE: THE APPROACH USED TO SOLVE THIS PROBLEM DID NOT INVOLVE CONVOLUTION!
THIS IS THE POWER OF EIGENFUNCTIONS!
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Gibbs Phenomenon: Periodic Square Wave Example

’;"I overshoot N N I "] overshoot

Y Y Y 1Y
Fourier series truncated after the Fourier series truncated after the

3rd harmonic components 7th harmonic components
A A A N1 overshoot | | _"( overshoot
y 1
N
v ] v v

Fourier series truncated after the Fourier series truncated after the

11th harmonic components 101st harmonic components
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Unit:
CT Fourier Transform



Example 6.1 (Fourier transform of the unit-impulse function). Find the Fourier transform X of the function
x(t) =Ad(r —1p),
where A and 7y are real constants. Then, from this result, write the Fourier transform representation of x.

Solution. 'From the definition of the Fourier transform, we can write substiiule givem ¥ (ndo

Fourier transform dnalysis €qudtion

~jwt 0 .
X = 52 et ot X(@) = [~ A —u)e

v _ putl constaat A out of inte
:A/ 8(t—t9)e 1 ¥dr. ol

Sn'-H-ng

Using the sifting property of the unit-impulse function, we can simplify the above result to obtain Progert
rty

= Ae'j"‘”" | 4aeg
X(w) =Ae 1?0,
Thus, we have shown that

AS(t —19) <55 Ae™ IO,

From the Fourier transform analysis and synthesis equations, we have that the Fourier transform representation of x is
given by

1 * j .
x(1) = E/, X(w)e!”dw, where X(w)=Ae/®0. n
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Example 6.3 (Fourier transform of the rectangular function). Find the Fourier transform X of the function

L
x(t) =rectt. [rec{: 4= { | Itlc 1' ]
O otherwise

Solution. From the definition of the Fourier transform, we can write

. N substitute given funetion X into
Kuw) = § Zop 2 e™ ¥t X(0)= / rect(t)e /¥ds.__ Fouriec trvasform dnalysis €qudtion

From the definition of the rectangular function, we can simplify this equation to obtain change I/mits SinCe
rect t =0 fer |45

1/2 _
X(0) = / rect(t)e /' dt

~1/2
12 rect t =1 fer t in
:/1/2eﬁwtdl Inrtegradtien (nterval
Evaluating the integral and simplifying, we have
inteqcrot€
o112
_ |1 —jor
X(0) = [ jo¢ ] ~1/2

_i . Y-
%w(em/z e Jw/p Sin © = 5'l: (eJe—e J J
= i [27sin ()]
=24
o nfo ?) n rewrite in form of sinc
= [sin(9)] /(5
=sinc (%). L)de{lmt:on of sine function

Thus, we have shown that

rectt < sinc ()
2/ Note: This is why the sinc function is

of great importance.

Edition 2020-04-11 Copyright (©) 2012-2020 Michael D. Adams




Example 6.6. Consider the function x shown in Figure 6.5. Let £ denote the Fourier transform representation of x
(i.e. &(t) = 5= [=. X(@)e/® do, where X denotes the Fourier transform of x). Determine the values £(—3) and £(3).

= ﬁ oo
A x(t R
X(-£%)= ) x(£7) =)
N 4
?—_‘
-L')_ : : L+y o
x(-47) =0 : L x(z7)=0
\ : : / At a point of discontinuity, the Fourier transform
t
_ % % representation converges to the average of the left
. . and right limits.
Figure 6.5: Function x.

Solution. We begin by observing that x satisfies the Dirichlet conditions. Consequently, Theorem 6.3 applies. Thus,
we have that
avera9ge of 1e4t and right

(-3 =1 (=3 +x(-10)] < T
=10+1
:% and
. - teft d right
=4 ) +a40)] :::;ae ot snd rig

I
Pl RI— Rl
N

=

+

(=}

S~—
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Example 6.7 (Linearity property of the Fourier transform). Using properties of the Fourier transform and the trans-
form pair

/M T o8 (0 —ap), (©)
find the Fourier transform X of the function
x(t) = Acos(wyt),

where A and @y are real constants.

Solution. We recall that'cos & = 4[e/* + e~ /%] for any real . Thus, we can write

X (@) = (F{Acos(ant)}) (@) from Euter @)
= (F{A (™ +eIN)}) ().

Then, we use the linearity property of the Fourier transform to obtain I ,’neam'.,gy

X(w) = 35{/ }(0) + 35{e ™ }().

. . . . N . +from 9iven
Using the given Fourier transform pair, we can further simplify the above expression for X (@) as follows:

FT pair ®
X(w) = 5278 (0 + w)] + 5 278 (@ — ap))]
=An[§(w+ wp) +0(w— ap)].
Thus, we have shown that
Acos(aot) < AT[8 (0 + wp) + 8(w — ay)). |
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Example 6.9 (Time-domain shifting property of the Fourier transform). Find the Fourier transform X of the function

x(t) = Acos(mpt + 6),
where A, @y, and 0 are real constants

Solution. Letv(t) = Acos(myt) so thatx(z)

r*:V({: [.""' )

‘{ table of ET pairs
:v(t—i—%

). Also, let V = Fv. From Table 6.2, we have that

cos(ant) &% 7[8(w — wp) +§(w+ ay)]. @
Using this transform pair and the linearity property of the Fourier transform, we have that

Linearidy

a F
V(w) = F{Acos(ant)} L/-I‘r - FT ot @

@ = An[8(@ + ap) +6 w-m 4"""“ FT pair @

(and hncarll;y)
From the definition of v and the time-shifting property of the Fourier transform, we have

. ‘/-‘l‘on\ FT 0{‘ @ us:ng time~-doma/n Sh"{{';ng
X(0) = /%™y (@)

propefi'y Ce - G/Wo)]
= eI/ AR[5 (0 + wp) + (0 — ap)]. D

substituting expression fer
Viw) frem @

Thus, we have shown that

Acos(wot + 0) <5 Ae! /™ [§(w + ay) + 8 (@ — )]
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Example 6.10 (Frequency-domain shifting property of the Fourier transform). Find the Fourier transform X of the
function

x(t) = cos(myt) cos(207t),

where @y is a real constant.

Solution. Recall that'cos ox = [ef @ 4 e /% for any real . Using this relationship and the linearity property of the
Fourier transform, we can wrlte ’L_) cos (20 mt)
= (F{cos(mor)( (e’zom +67’20m)}) (o) d;stribute
= (F{% Jzo’”cos (o) + 1e= 2 cos(ant)}) (o) —ﬁ
. It
'l;-‘;lt of = 1 (F{e”™ cos(wt)}) (@) + 5 (Ffe 2 cos(wt)}) (o). inearity pProperty
pairs

From Table 6.2, we have that

cos(apt) <% 7[8(w — @p) + 8(w+ ay)].: © 'F"‘equenc.y
L damain
From this transform pair and the frequency-domain shifting property of the:Fourier transform, we have Shitting
[ Pro Perly

F{cos(apt)}) (@ —20m) + 5 (F{cos(ar)}) (@ +207)
1300 0] 80 )l .z (1180 30+ ) D Freeic®

(

[

(m[6(w+ wp —207) + 6(w — wy —207)]) + ([5(a)+a)o+207r)+6(a) a)0+20n)})>subsh'lu{e
[6(0+ oy —207) + 6 (w — @y — 207r)+6(w+wo+207t)+5(w wp +20m)]. |

/—\
v
Il

o
IR NI— = NI—
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Example 6.11 (Time scaling property of the Fourier transform). Using the Fourier transform pair

CTFT . (0] )
tr < —
rec sinc ( 5 ) ®
find the Fourier transform X of the function
x(t) =rect(ar),

where a is a nonzero real constant.

K’

Solution. Let v(t) = rectt so that x(¢) = v(at). Also, let V = Fv. From the given transform pair, we know that
e freem T of @
using FT pajr @

From the definition of v and the time-scaling property of the Fourier transform, we have

Q)

V(w) = (F{rectr}) (o) = sinc (—) .

> (6.9)

@ — X(w):iv(g). e— from FT of ®
jal* \a Using time scating properé);
Substituting the expression for V in (6.9) into the preceding equation, we have

substituting (6.9) a3
X(O))Zﬁsinc(%) : e @

Thus, we have shown that

e 1. ( (O] )
t(at) — — — . |
rect(at) sine { 5

la|
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Example 6.12 (Fourier transform of a real function). Let X denote the Fourier transform of the function x. Show that,
if x is real, then X is conjugate symmetric (i.e., X (@) = X*(— o) for all w).

Solution. From the conjugation property of the Fourier transform, we have
T (o) =X'(-0). € fram Cenjugation propery,

Since x is real, we can replace x* with x to yield & .
p y XT=x Sinte ¥ is cea|

or equivalently Fx =X (by dedinition)

X(0) = X*(~). ]
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Example 6.13 (Fourier transform of the sinc function). Using the transform pair

. (O
rectt <% sinc (5) , @

""V"
find the Fourier transform X of the function vit) \[(.w)

. t
x(t) = sinc <7> .
(1) =sine (5
Solution. From the given Fourier transform pair, we have

TFT . () S )
v(t) =rectt < V(w)=sinc (E) «— ‘:'1'_“’;';‘_ '55*‘”""9 grven

/—\ NN
By duality, we have (. F V (u) = 2TTv (-w)
g S ]

t CTFT,
V(t) = sinc (7) — FV(w) =2nv(—w) =2nrect(—®) = 2mrect @.
2 \j

/ AN N
duality gwen rect is

Thus, we have Fr paic o)

even
t TFT,
V(t) = sinc (5) &L FV(w) = 2rrect 0.
Observing that V. =xand JV = X ,::we can rewrite the preceding;relationship as
v t
x(t) = sinc (5) &L X(w) =27wrecto.
Thus, we have shown that

X(®) =2nrect®. [
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toble of
FT pairs
Example 6.14 (Time-domain convolution property of the Fourier transform). With the aid of Table 6.2, find the
Fourier transform X of the function

x(t) = x1 xxp(t),

where

xi(t) =e Hu(t) and x(t) = u(r).

Solution. Let X and X, denote the Fourier transforms of x| and x;, respectively. From the time-domain convolution
property of the Fourier transform, we know that

X(w) = (F{x1 xx2}) (0) Lime-domain Comvolution

[‘Jrc:?%btaﬂi =X (@)X (). propecty (6.10)

From Table 6.2, we know that

@ X1 () = (ff{e 2y (@) table of FT pairs

= 2+]w

) X(w) = Fu(w) —D toble of FT paics

f77:6 ) + 56

Substituting these expressions for X; (@) and X>(®) into (6.10), we obtain .
x:.wg Xilw) XoWw) (6. (o)/ substituting O and @
X (@) = [7775) (78 (@) + =) into (6.r10)

2+]w6( ) (24»]](0)

= mé(wwm ) +

. ) gquivalence gpcogperty m
25((1))4’]-2@7(02' of J fuattion
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Example 6.15 (Frequency-domain convolution property). Let x and y be functions related as

¥(t) = x(t) cos(@ct),
where @, is a nonzero real constant. Let Y = Fy and X = Jx. Find an expression for Y in terms of X.

Solution. To allow for simpler notation in what follows, we define

v(t) = cos(wt) ®
& — toble of FT p2irs
and let V denote the Fourier transform of v. From Table 6.2, we have that

@ V(o) =1[8(0— o) +8(0+a,). < Trom 1oble of FT painrs

From the definition of v, we have
st @ =x(t) ¢
@ (1) =x()(r). & Sce VY ) cos L:J;é)
vit

Taking the Fourier transform of both sides of this equation, we have

V(@) = ) (@). ) PRing FT of both sides of @

Using the frequency-domain convolution property of the Fourier transform, we obtain f requency ~demain

Convorut rogerd
Y(0) = LX V() or Plogerty

[ X0 yin. D SeFinrtion of convotution

:E7

oo

Substituting the above expression for V, we obtain Substitute V from @
Y(a))zﬁ XA)(x[d(o—A—o,)+6(®0— 2L+ w)])dA
—oo ) Concei TT2s

o

3| XM)[E(@—A—a)+8(@—A+a)ldA
-700 't 1 Q ’Lwa
°QX(/I)(S(co—A_co)d/H/mx(x)&( —A W s?""*ter;s
"-——-V~C —o0 _V_’
D § is even

regroup

=3 -/jo X(A)6(A — o+ o)dA +/j° X(A)S(A —o— wc)dk}

_/fx(x)smf(wfwc)]d“/f X(A)S[A(w+ai)]4d}b
%[)_f(w—wc)+x(w+wc)] -—
=1X(0—o)+iX(0+ o).

B—

Sitting properv!.y
eXgand
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Example 6.16 (Time-domain differentiation property). Find the Fourier transform X of the function

x(t)=45(1).

Solution. Taking the Fourier transform of both sides of the given equation for x yields

X(w)= (&”{%50)}) ().
Using the time-domain differentiation property of the Fourier transform, we can write
fro definitron of X
X(0) = (7{430)}) () & 7o
= joF5(w). 4.) time ~-domarn diffecentiation

?I‘Qper-ey
Evaluating the Fourier transform of § using Table 6.2, we obtain
Fdlw) =1
X(0) = jo(1)
=jo. |
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Example 6.17 (Frequency-domain differentiation property). Find the Fourier transform X of the function
x(t) = tcos(opt),
where @y is a nonzero real constant.

Solution. Taking the Fourier transform of both sides of the equation for x yields

X (w) = F{rcos(mpt) H o).

From the frequency-domain differentiation property of the Fourier transform, we can write
-From defin; tion O-‘ X

X(w) = F{tcos(mot)}
(@) =5 (e ) frequency - domain
= j(DF{cos(ant)}) (@), differentration progerty

where D denotes the derivative operator. Evaluating the Fourier transform on the\right-hand side using Table 6.2, we

vrain from T jabre of
. FT poir @ FT pairs
X(0) = j5 [7[8(0— @) + 8(0 + ay)]] py
= jm d [5((1) @) + (o + )] —bﬁb‘l’orm‘l‘“
1 2 X
=jn dig(w a)o)+]7rdw5 o+ @) cf:r:;:::a:c aperdter n

U AN A NNANANANANA NAann/
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Example 6.18 (Time-domain integration property of the Fourier transform). Use the time-domain integration property
of the Fourier transform in order to find the Fourier transform X of the function x = u.

Solution. We begin by observing that'x can be expressed in terms of an integral as

= u(r) :/_;5(7:)d'c

Now, we consider the Fourier transform of x. We have _“ @
rom

( {/ o(t dr
time -domain integrotion

From the time-domain integration property, we can write property

X(0) = 75F5(w) +7F5(0

Evaluating the two Fourier transforms on the right-hand side using Table 6.2, we obtain Fd'lw) =
X(@) =5+ >
= — + né(w df‘OP L's
Thus, we have shown that u(t) CTH” 5 T 1o (w). [ |
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Example 6.19 (Energy of the sinc function). Consider the function x(z) = sinc (%t) which has the Fourier transform
X given by X(@) = 2zwrect®. Compute the energy of x.
.

Solution. We could directly compute the energy of x as

E/ (1) dt
*/ |sinc (31) |dt _fw lSM'l'/Zl d+ _—’®

2 t/2

This integral is not so easy to compute, however. Instead, we use Parseval’s relation to write

1= 2
E:—/ X () do
2n ) -me 3«'ven x ) ®
:i/ 2rrecto)*dw
27 J -
Y ) rect €t =) -Fep te [-2) z] Ind
= ﬂ/;]/z(zn) do 2ero otherwise
1/2
:27r// do Concel ane 217 foot0r
—-1/2 )
1/2 1 ate
=27[0)] |7/1/2 ntegr
~2nlf+}
=2m.
Thus, we have
E= / ’smc {dt |
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Answer (g).

We are asked to find the Fourier transform Y of
s, *
¥(1) = [re ¥ x(r)]

In what follows, we use the prime symbol to denote the derivative (i.e., f’ denotes the derivative of f). To begin,
we have

¥() { Pl }
= {e Blex(r) }

Letting v (1) = tx(t), we have t)=tx() O

(1) = [eﬂs’vl(t)} N
. —— st
Letting v, (t) = e /v (t), we have velt) = e v, (¥) ®

Thus, we have written y(z) as

where

Taking the Fourier transforms of the preceding equations, we obtain

FT of @ usmg -frequency—-domom
@ Vi(o) = jX'(0), “ ditierentsa
tion P'°?€f'"‘)l
'O) Va(@) =Vi(0+5), and“— FT of @) using frequency-damarn

— V*(— Shifdin fo
® VO) =V (0 e rr of @ wring ey sroperdy
Combining the above equations, we have Property
— * /
Y(@)=V;(-0) . substifute ®
=[Vi(—ow+5)]

_[K(or3) D Sbstitute @
=—jX" (-0 +5). 2 (ap) ¥ = ¥ ¥
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to do
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L

Example 6.26. Let X and Y denote the Fourier transforms of x and y, respectively. Suppose that y(¢) = x(¢) cos(at),
where a is a nonzero real constant. Find an expression for Y in terms of X.

Solution. Essentially, we need to take the Fourier transform of both sides of the given equation. There are two obvious
ways in which to do this. One is to use the time-domain multiplication property of the Fourier transform, and another
is to use the frequency-domain shifting property. We will solve this problem using each method in turn in order to
show that the two approaches do not involve an equal amount of effort.

FIRST SOLUTION (USING AN UNENLIGHTENED APPROACH). We use the time-domain multiplication property.
To allow for simpler notation in what follows, we define

v(t) = cos(at)
¢ iobie of FT pairs
and let V denote the Fourier transform of v. From Table 6.2, we have that

from ftoble af FT pairs
V(w) =zn[6(0—a)+5(0+a).
Taking the Fourier transform of both sides of the given equation, we obtain
o— from detinition of y
Y(w) = (F{x()v(1)})
= Lx«V(0) <~> time-damain muitip fication
— 2n

. ﬁ prepecty
=L [ XA)V(®—L)dA. i

i definstticn of Convolutran

—oo

Substituting the above expression for V, we obtain

y(a)):2;/°;x</1)(n[5(w—/1—a)+3(w—a+a)}>‘dA) concel T 's

:%/ X(A)[8(w—2A —a)+8(w—A+a)dA spiit inte b
o ﬁ} ln-te9rals

X(A)o(w— l—adl—i—/ )0(w—A+a)dA
D & s even

make Shidts
X(A (w—a dl—i—/ X(4 [l—(a)—&-a)]dl} expiier b

oo

N[ —

oo

N—

[ x
/NX 50— w+ad/1+/ X(A)§(h— o — adﬂt}
I

oo

X(@-a)+X(0+a) & sifting preperyy,
X(w—a)+ 13X (0 +a).

I\)\'~ N\'—‘

Note that the above solution is essentially identical to the one appearing earlier in Example 6.15 on page 1.
SECOND SOLUTION (USING AN ENLIGHTENED APPROACH). We use the frequency-domain shifting property.
Taking the Fourier transform of both sides of the given equation, we obtain

m defrasition of
¥ (@) = (F{x(r) cos(ar)}) (@) {% set nof y
(Sr e]llt +e Jat)x(l)}) ((D) : ' ) \
3 (F{x(0)}) (w)+%(?{e—/m lineacity ecogerty

_ 1 1 -fr uency ~cdemain
= QX(a)—a)—l-jX(aH-a) Sh'f*!ng prcy-eriy

COMMENTARY. Clearly, of the above two solution methods, the second approach is simpler and much less error
prone. Generally, the use of the time-domain multiplication property tends to lead to less clean solutions, as this forces
a convolution to be performed in the frequency domain and convolution is often best avoided if possible. |

Cam Yl

AN
THE TAKEAWAY: Only use the time-domain multiplication property when absolutely

necessary, since its use will result in the appearance of a convolution operatw
A A A A ANSAAA A A A A A
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Answer (j).

We are asked to find the Fourier transform X of
—1)dr.

We begin by rewriting x(¢) as
@ — x(1) = v3(50),
where

O — (1) =eult),
O —> v(1)=v(t—1), and

® —> (1) = [ e n(nde. =

St -1y
KWy =S € latz-nat

-2 =Lt

t
= fhsm e e w(z-1) dT
————
vilt-n where V(1) = ety @
= 05t
-2 € V|(T~D dT

—
U, (T) where \/z(ﬂ:‘/((f—l) @

il

-2 5+
e f-oo V2LT) 4T
V3(5t) where V3(h) = e"‘j_‘;vzm 4t

= v3(54) @

+
e-zj v (T) dT
-@

Taking the Fourier transform of both sides of each of the above equations yields

® vi(w)=—

T 1tjo’
@ vy(0) =V (),

@ vi@)=e [j;w(w) +nv2<o>6<w>] ,

FT of @ using FT 4able

< ET of @ using time Shifting

groper{y
‘_;n? FT of @ using fntegeodion
9I‘op¢ﬂy

@) X(0)=1s(0/5). <— FT of @ using dime Scafing

Combining the above results, we have

properiy

> X(0) = {V(0/5

~

substiiuie @
)Vz((o/S)—s—an(O)S(a)/P

? Substiiute @

:) substiduie ©
)—i—né(w/S)]

Sl'mPl;fY

=3¢ [(j(a:ﬁ)

1 (Ji)) Va(@)5) +7rV2(O)6(co/5)]

_ (]Sw) IV, (0/5) + 2V (0)8(w/5)
()
£l e
. (szziwz> e‘j“’/5+7r5(a)/5)} .
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Example 6.20. Let X; and X, denote the Fourier transforms of x; and x;, respectively. Suppose that X; and X, are as
shown in Figures 6.6(a) and (b). Determine whether x; and x; are periodic.

X (o) X (o)

1 1

L]

-6 _J4 _:"2 °0 2
~3wg ~2uwg o ('33 Wy 2

—>
£ BT

o sluo
Figure 6.6: Frequency spectra. The frequency spectra (a) X; and (b) X5.

Solution. We know that the Fourier transform X of a T-periodic function x must be of the form

o

X(@)=) od(w—kay),
k= —oco

where @y = 27” and the {oy} are complex constants. The spectrum X; does have this form, with @y =2 and T =

27” = . Therefore, x; must be m-periodic. The spectrum X, does not have this form. Therefore, ¥, must not be

periodic. |
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Example 6.21. Consider the periodic function x with fundamental period 7 = 2 as shown in Figure 6.7. Using the
Fourier transform, find the Fourier series representation of x.
. T=2
x(t)

1

1 3
2 2

1w
=

Figure 6.7: Periodic function x. sinte T=2

Solution. Let ay denote the fundamental frequency of x. We have that wy = 27” = m. Let y(¢) = rectz (i.e., y corre-
sponds to a single period of the periodic function x). Thus, we have that

x(t) = i y(t —2k).
 S—

Let Y denote the Fourier transform of y. Taking the Fourier transfgrm of y, we obtain
~T tobnse

Y(w) = (F{rectr}) (a))/:\s‘inc (lo). @

Now, we seek to find the Fourier series representation of x, which has the form

x(t) = Z crelkr,

k=—co
Using the Fourier transform, we have ET of
Sompre & Y
cx = 1Y (kax) « at Kwg fer k*h FS coefficient
= 1sinc (%k)-) substitute @)
:%sinc(%k). ) Wo=T [ ]
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Example 6.24. Consider the periodic function x given by x(t)
- A
x(r)="Y xo(t—kT), 1 e L
ke ~V/4 4 S
where a single period of x is given by
xo(t) = Arect (%) I_A— s A rect (?)
and A is a real constant. Find the Fourier transform X of the function x. — T . y t

Solution. From (6.16b), we know that

2-co
\"W\—l \_/\./V hnd
~ = Y @oXo(kan)d(®— kay). .
k=—oo r table of FT pairs

Ki“m)_ S weX, (rwow) X(0) = {k;mxot—kT} ) D using (6.16)

So, we need to find Xo. Using the linearity property of the Fourier transform and Table 6.2, we have

Xo(0) = F{Arect (1)} (@) o Foom dedinition of X

:A?{rect(% Ho) D tineacity

= 4L sinc (9F) FT tobie
Thus, we have that
X(@)=Y o (4F)sinc (%) 5(w—kay)
. ) Wo = 20T
o o= <L
=Y mAsince (Z) §(w — kay). T |

k=—oc0
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Example 6.30 (Frequency spectrum of a time-shifted signum function). The function
x(tr) =sgn(t—1)

has the Fourier transform
X(0) = Ze o, (1)

(a) Find and plot the magnitude and phase spectra of x. (b) Determine at what frequency (or frequencies) x has the
most information.

Solution. (a) First, we find the magnitude spectrum |X ()|. From the expression for X (@), we can write

w.‘ D fabl = 13llb]

{tore magnitude o

f X (e
both sides o} © —

Q
J
_&

&

B Bl e\'\’

I
P e
oo
T ®
gz

Next, we find the phase spectrum argX (®). First, we observe that argX (@) is not well defined if @ = 0. So, we
assume that @ # 0. From the expression for X (@), we can write (for @ # 0)

take argument O'f/argX( —arg e Jw oeg (2b) = arg 3+ org b
both sides of ® .

2(» ®w<0

=—Jsgno-o. 4) definitton 04 Signum fuactron

im
In the above simplification, we used the fact that { :"’ZR w<o
— e
T
2 2y J—37 ©>0 en
arg = =arg(—%) =
@ jo ( o) {721  <0. Re w>O0

{ b "ﬂ'/z

Finally, using numerical calculation, we can plot the graphs of |X ()| and argX (®) to obtain the results shown in
Figures 6.10(a) and (b).

(b) Since |X (w)| is‘largest for @ = 0, x has the most information at the frequency 0.
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argX (w)

function (s
11 lorgest 2t w=0D

S}

SEY
I
S

[SIE]
|

(b)

Figure 6.10: Frequency spectrum of the time-shifted signum function. (a) Magnitude spectrum and (b) phase spectrum
of x.
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Example 6.34 (Differential equation to frequency response). A LTI system withinput x and output y is characterized
by the differential equation

7y () + 11y (1) + 13y(t) = 5x'(t) + 3x(1),

where x', y/, and y” denote the first derivative of x, the first derivative of y, and the second derivative of y, respectively.
Find the frequency response H of this system.

Solution. Taking the Fourier transform of the given differential equation, we obtain
& \" BT 7 .
(ﬁ) 2 > ()" Xw) 7(j0)*Y (o) + 11 joY (o) + 13Y (0) = 5j0X (0) + 3X (o). move terms tanisining

AN A Y ond X to the refi. 04
Rearranging the terms and factoring, we have : .
ging g tight-hond Sldc._g’ "'-S?ecff\lel),

)ﬂ‘ -Fac*or

(=70* +11jo+13)Y (o) = (5j0 +3)X (o).

O Y o Biwe3 dvide bath sides by

Thus, H is given by T cwaljw 13
Xtw) W=+ (=7wZ + njw+13) X(w)

Y (o) S5jo+3
® Xia)) —To +11]0)+13’
~A ~

©

@ Since system is LTI, Yw) =Xlw) Hiw) => H(W) = Ytw)

Xlw)
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Example 6.35 (Frequency response to differential equation). A LTI system with inputx and output y has the frequency

response
~T0*+11jo+3
H(w) =
(@) —50%+2
Find the differential equation that characterizes this system. Since System s LTI,
Solution. From the given frequency response H, we have Yiw) = X (w) H L“I) =
Hw) = Yw)
Y(o) —T0*+11jo+3 Xiw)

X (o) —5w>+2
Multiplying both sides by (—5w? 4‘]’ 2)X(w), we have
—50°Y (@) +2Y(0) = —70*X (o) + 11 joX (0) 43X (o). )
write Wwith powers
Applying some simple algebraic manipulation yields of jw
5(jo)*Y (@) +2Y (o) =7(jo)’X (o) + 11(jo)X (o) +3X (o).
Taking the inverse Fourier transform of the preceding equation, we obtain
A ONATTTINNA 59" () +2y(t) = 72" (t) + 11x' (t) + 3x(2). u
a\" Ty )”
(3—1:) wly) > (jw) Xw)

A AN A AN
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Example 6.38 (Bandpass filtering). Consider a LTI system with the impulse response

h(t) = 2 sinc(t) cos(4t). Jeom BT {opye ¢
T
Using frequency-domain methods, find the response y of the system to the input I &> 2T §(w)
-1y iU
x(t) = a4 2cos(2t) + cos(4t) — cos(6t). Cos{wot) e T [g(_w_wo) . J(wﬂuo)]

Solution. ‘Taking the Fourier transform of x, we have
taking FT
X(w)=-2n8(0)+2(x[6(0—2)+0(0+2)])+7[6(0—4)+6(w+4)] —n[6(0w0—6)+ (w0 +6)]

=—-n6(0+6)+nd(w+4)+2x5(w+2)—276(0)+2x6(w—2)+ 76 (0—4) — nd(0 —6).

The frequency spectrum X is shown in Figure 6.22(a). Now, we compute the frequency response H of the system.
Using the results of Example 6.36, we can determine H to be

Exompie &.34 found the H(o) = F{ 2 sinc(t) cos(4t) } (W) D uslng result from Exsmpie 6.36

FT poir =rect (2*) +rect (22) With wy=1, waz4

2::_5 anc(wb'D Cos(wa-t] H _ 1 3< |(D| <5 ) defini tion o{ rett function
re.r,t(“"“") + rec,t(“_::f) 0 otherwise.

The frequency response H is shown in Figure 6.22(b). The frequency spectrum Y of the output is given by
Y(w) =H(0)X(0) D onty twa shifled deits functions
=né(w+4)+nd(w—4). 3re nantzéro when H(w) £Q

See Figures 6.2
Taking the inverse Fourier transform, we obtain d [ '9 2(37 and (b) J

V(1) =F {rd(0+4)+18(0—4)} (1) toking iaverse FT

=F Hrb(w+4)+5(w—4)]} (1) feem toble o
= cos(4t). 1c -

FT poaics
Cos (Wot) g rr[:(w"wo) +£(_w+hl°}]
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Figure 6.22: Frequency spectra for bandpass filtering example. (a) Frequency spectrum of the input x. (b) Frequency
response of the system. (c) Frequency spectrum of the output y.
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Example 6.40 (Simple RL network). Consider the resistor-inductor (RL) network shown in Figure 6.26 with input
vi and output vp. This system is LTI, since it can be characterized by a linear differential equation with constant
coefficients. (a) Find the frequency response H of the system. (b) Find the response v, of the system to the input

vi(t) = sgnt.
. R AL :j:c v
i K
RN T
Rits
\% L % V2
| |

Figure 6.26: Simple RL network.

Solution. (a) From basic circuit analysis, we can write
vi(t) =Ri(t)+L%i(t) and (6.35)
va(t) = LLi(r). (6.36)

(Recall that the voltage v across an inductor L is related to the current i through the inductor as v(t) = L4 i(t).) Taking
the Fourier transform of (6.35) and (6.36) yields

using timec-domain Vi(®0) =RI(®)+ joLl(o)

dif{erentiotion progerty = (R+ joL)I(®w) and 6.37)
€T -
gap 5 Jw Xew V(@) = joLI(®). (638)
From (6.37) and (6.38), we have @
— . .
. % B Vz((!)) SUl-bS'l'xiu.‘l'-C (638) 1N
@ Sinte System iS LT’, (w)_vl(a)) numerator dna (6.37)
Volw) = Vi(w) Hlwy = _ joLl() In denominatol
oy = o L) R+ joL)l(®)
it Gy - A 4_) Concel Lrs (6.39)
~ R+joL’ '

Thus, we have found the frequency response of the system.
(b) Now, suppose that vi(¢) = sgnt (as given). Taking the Fourier transform of the input v; (with the aid of

Table 6.2), we have - F3s
- > { an ‘t}(b) -{-‘r‘em FT %Dble
Vi(o) = —. (6.40)

jo
From the definition of the system, we know
Vrrom ® Va(0) = H(0)Vi(0). (6.41)
Substituting (6T40) and (6.39) into (6.41), we obtain Substi Fute
V) Hw) Va(@) = (Ri?ﬁ)L) <]i)>
oL 2 cencel factors of jw
" Rt joL
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[N

toKing i
Taking the inverse Fourier transform of both sides of this equation, we obtain ng Nvérse T

2L
va(t) = — (1)
R+ joL divide numerster and
) dencminater by L

Using Table 6.2, we can simplify to obtain feemn FT i2bie

[
a+rw

- £
va(t) = 2¢~ Ry (1), e ?tu () «<=—

Thus, we have found the response v; to the input v; () = sgn?. |
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DSB-SC AM: Transmitter

c(t) = cos(w.t)

¥(t) = cos(®.1)x(t)

toke FT
X=Fx, Y=0y e’

Y( ) H:{CIOS w‘ ——ﬁ Euler

9:{2 (eij te J(DL Iineam'{'y
[0 Yo >+ff{e*f“’c KOY@)] 5 T
1
2

X(0—0)+X(0+o)] praa rbien
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DSB-SC AM: Receiver

c(t) = cos(®ct)

h(t) = 220 sinc (o01)
y v X
h ——

v(t) = cos(w:t)y(t), h(t)= 2"’T“’Czs)inc(o)cot), £(1) :@v*h(t)

Y=9y, V=9v, H=Fh, X=95%
V() = F{cos(w.t)y(t) } (@) <O

3‘{% (e./'(oct _|_efjmct) m uter

t ®

L {0} (@) + T e o0} @)]2)

t w

2
%[Y(w— o) +Y(0+ o.)] goguiation
linesrity

L/F‘l'o{@

7 e
H(w) = 3’"{ 20;c0 slnc(w e
rem 2bje
L) £ sine(gr) <> rect (35

= 2rect ( 0 b

0 of @
X((D) = H(Q))V((D) / :51;'19 convolution property
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DSB-SC AM: Complete System

c(t) = cos(w.t) c(t) = cos(®ct)

h(t) = Z(’JT‘O sinc(®cot)
X y y v X
h ——

from resuit for dransmitter

e

O Y(0)=1X(0-0)+X(0+o))

o frem resutt fer receiver

3 -—__—s substitute @
=3 (3 X ([0~ o]~ o) +X ([0 + o) +

F X ([0+ 0] — o) + X ([0+ o + o)]]

Simpiify
= 1X(0)+ 1X(0—20,) + 1X (0+20,) Y
A feern resuit for receiver
@ X(O)) - H((D)V((D)/ Substituie @
=H(0) [1X(0) + 1X(0—20.) + 1 X (0 + 20%-)]7

multi
-t s o= ) 00 )0
3 2X(0)] + 30+ 40)TREI T
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DSB-SC AM: Spectra

X(o)
L C(w) H(w)
2
=ty b 0] °
f 00 O
Transmitter Input
Y(o)
1
2]
—20¢ —0¢ = 0p—0c—0¢ + o —0p @ Oc -0 G Oc o 20¢ o
Transmitter Output
2 V(o)
3
1—\
S
20 — 0 20 200 + o), “Weo B o Weo 00—y 20 20, oy
X(0)
1
—2oe —be —b, o/ e Toe @
Receiver Output
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Analysis of Double Side-Band Suppressed-Carrier Amplitude Modulation (DSB/SC AM) |

Now, let us consider the communication system shown in Figure 6.29. This system is known as a double-side-
band/suppressed-carrier (DSB/SC) amplitude modulation (AM) system. The receiver in Figure 6.29(b) contains a LTI
subsystem that is labelled with its impulse response 2. The DSB/SC AM system is very similar to the one considered
earlier in Figure 6.27. In the new system, however, multiplication by a complex sinusoid has been replaced by
multiplication by a real sinusoid. The new system also requires that the input signal x be bandlimited to frequencies
in the interval [— @y, @] and that

Wy < 00 <20, — Wp. (6.45)

The reasons for this restriction will become clear after having studied this system in more detail.

c(t) = cos(@.t) c(t) = cos(@.t)
l h(t) = 22 sinc(wcot)
X Yy y v x
> (x) > h e
(a) (b)

Figure 6.29: DSB/SC amplitude modulation system. (a) Transmitter and (b) receiver.

Consider the transmitter shown in Figure 6.29(a). The transmitter is a system with input x and output y that is
characterized by the equation

where

c(t) = cos(@t).
Taking the Fourier transform of both sides of the preceding equation, we obtain

Y(w) =F{cx} (o)

= F{cos(w.1)x(t) }H o) ——7 Euler
=T {3/ + e x(1) } () 4 ) llnearit
= L[5l x(1) H(@) + Fle 2 x(1) }(w)] 4

)@
=1 X(0—0)+X(0+a0). ;"3""‘:;""“"9"4 (6.46)
Sh.{t, ng Propecry

(Note that, above, we used the fact that cos(@.t) = 1 (e/® +~/®").) Thus, the frequency spectrum of the (transmit-
ter) output is the average of two shifted versions of the frequency spectrum of the (transmitter) input. The relationship
between the frequency spectra of the input and output can be seen through Figures 6.30(a) and (d). Observe that we
have managed to shift the frequency spectrum of the input signal into a different range of frequencies for transmission
as desired. Next, we must determine whether the receiver can recover the original signal x.

Consider the receiver shown in Figure 6.29(b). The receiver is a system with input y and output £ that is charac-
terized by the equations

> = coslwet) y )

v(t) =c(t)y(t) and (6.47a)
() =vxh(t), (6.47b)
where c is as defined earlier and
— 2“’60 :
h(t) = = sinc(@cot ). (6.47¢)
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Let H, Y, V, and X denote the Fourier transforms of A, y, v and X, respectively. Taking the Fourier transform of X
(in(6.47b)), we have

X = van)
X(0) =H(0)V (o). (6.48)
r tabie of FT pairs
Taking the Fourier transform of % (in'(6.47¢)) with the assistance of Table 6.2, we have

hlE) = 2222 Sine (ueot)

H(o) = 3’{2"’700 sinc(wcof)} (o) frem FT toble
o B X T
= 2rect ~2— T Sinc(Bt) €—> rect (f’;)

20
_ 2 ‘(D| S @0 >
)0 otherwise. definstion of rect funttion

Taking the Fourier transform of v (in (6.472)) yields
Vi) = e yr) = coslwetd) y(t)

V(o) =F{cy}(o)
= F{cos(@ct)y(r) Hw) Eufer

=T {5 (/™ +eT ) (1)} (@) I

0 @)+ (e () (0] £ 2

=¥ (0-m)+Y(0+a). e__,,,-);,equency_dom,,.n ahifiing
Property

Substituting the expression for ¥ in (6.46) into this equation, we obtain

t_ YY) = ‘%‘ [ w=-we)+ X (W'l-wc,)]
V(o) =1L X(0-o]-o)+X([0-o]+o)+iX(o+o] - o) +X(o+o]+ao.)]
%X(w)+lX(w—2wc)+£X(w+2wc). < (6.49)

4 N Sl'rnph'fy

The relationship between V and X can be seen via Figures 6.30(a) and (e). Substituting the above expression for V
into WAk and simplifying, we obtain
A
Weo  (6.48) < ¥X(w) = Hlw)Viw)

X(0) =H(0)V(0) substitute V {rom (6.49)
=H(0)[1X(0)+ 1X(0 —20.) + X (0 +20,)]

=1H(0)X(0)+ 1H(0)X (0 —20.) + 1H(0)X (0 +20.)
= 5 [2X(0)] + 1(0) + 5(0) ®
=X(w).

w
rect (m°) =Q ful‘ ’U]>Wc° ﬁ,
In the above simplification, since H(®) = 2rect % and condition (6.45) holds, we were able to deduce that H (@)X (@) =
2X (w), H(o)X (o —2@,) = 0, and H(®)X (@ + 2@,) = 0. The relationship between X and X can be seen from Fig-
ures 6.30(a) and (f). Thus, we have that X = X, implying £ = x. So, we have recovered the original signal x at the
receiver. This system has managed to shift x into a different frequency range before transmission and then recover x
at the receiver. This is exactly what we wanted to accomplish.

distribute

\L— Wy € Weg < 2 W - Wy
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—yp p (b) (C)

w
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©) 7
%(0) Wy Cwigg € 2w~y
1
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Figure 6.30: Signal spectra for DSB/SC amplitude modulation. (a) Spectrum of the transmitter input. (b) Spectrum
of the sinusoidal function used in the transmitter and receiver. (c) Frequency response of the filter in the receiver.

(d) Spectrum of the transmitted signal. (e) Spectrum of the multiplier output in the receiver. (f) Spectrum of the
receiver output.
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Sampling: Fourier Series for a Periodic Impulse Train
@

Copyright © 2013-2020 Michael D. Adams

o)=Y 8—kT), o,

k=—oo

. p hos Fourier series regresectation,
@ p(t) _ Z Ckejk(oxz since p is peciodic

k=—oo0

Fourier series dnalygis equation

1 T2 ik
= T/ p(t)e "' dt
-T/2 See plot of p in figure @
1 T2 ik
—1 / 8(t)e ko gy
-T/2 integrand rs zefo
oo . everywhere outside
= %/ 5([)e_fkwstd[ 1tegrotion interval
1 Si'-f'ﬁng propec{-);
T
_ oy D = 21T by definition
2n
L . substitute @ o (0]
(l) 5 Z Jkoogt «
P\) =7 €
k=—o0
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Sampling: Multiplication by a Periodic Impulse Train

ideal C/D converter

pi)= ¥ 8(—kT)

: k= .
X . s convert from . y
impulse train  ————>—

to sequence

o0 / resuit of finding Fourier Series
e Jkoogt

® p(t) = % Z representotion of p in(®

k=—o0
) ] / substitute Fourser series
s(t) = 0% efkw“rx(t) representation of p i (B nto @
2n
k=—oo
X=3x, §S=0Ts toke FT

using modulation
p(‘oper{:y

S(o) =2 i X (0 — koy)

k=—oco
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Analysis of Sampling System @ PL‘B
........ ideal C/D converter G +
p)= Y 8(—KkT) : gl gy
. T o 7
convert from : y

s =x(® p(t) (6.51)

impulse train —————
to sequence :

Figure 6.36: Model of ideal C/D converter with input function x and output sequence y.

Now, let us'consider the above model of sampling in more detail. In particular, we would like to find the rela-
tionship between the frequency spectra of the original function x and its impulse-train sampled version s. In what
follows, let X, Y, P, and S denote the Fourier transforms of x, y, p, and s, respectively. Since p is T-periodic, it can be
represented in terms of a Fourier series as

from definition of Foucier Series

p(t) = Z crel*ost, (6.52)
—

Using the Fourier series analysis equation, we calculate the coefficients ¢y to be

_ Fouriec series 2nalysis equation

- ;/T//Z p(l‘)ejkatdi) ®
-T/2

T/2 ) { po© ~ykw t
1 —jkoo = - S
o T /_T/z S dr = = S""o 3({')5/;‘{)

Si{ting proper-!-);
3 - 2
= 5. D T= Wy (6.53)

Substituting (6.52) and (6.53) into (6.51), we obtain
L ste) = (&) pL)

reglace p(t) by its

s(t) = x(t) Z %ejkwst Fourrver Series cepresentotion
k=—o0
_ % x(t)ejka)st. r‘earrange
k= —oco0 .
_ } . take FT using
Taking the Fourier transform of s yields frequency - domain
> Shitting progert
S(w)=5 Y, X(o—kay). Y (6.54)

k=—oco

Thus, the spectrum of the impulse-train sampled function s is a scaled sum of an infinite number of shifted copies of
the spectrum of the original function x.
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Example 6.41. Let x denote a continuous-time audio signal with Fourier transform X. Suppose that |X ()| = 0 for all
|@| > 441007. Determine the largest period 7 with which x can be sampled that will allow x to be exactly recovered

from its samples. 44100TT cad/s = 22.05kH2
Solution. The function x is bandlimited to frequencies in the range (=@, ®,), where ‘@, = 44100x. From the

sampling theorem, we know that the minimum sampling rate required is given by
from Sampling thecrem

5 =20y
=2(441001) € Wm= 44y0aTT
= 882007. BB200T rad/s = 44.1kHz
Thus, the largest permissible sampling period is given by take re Cigrocal {or Corr €Sgonding
7o 53Mplin9 perrad
T oy
_ 2z
= 882007
_ 1
= 44100° "

Why does CD-quality audio use a sampling rate of 44.1 kHz?

In practice, how do we ensure the audio signal to be sampled is sufficiently bandlimited?

The human auditory system (assuming pristine hearing) can sense frequencies up to about 22.05 kHz.

" lowpwsy Sampie at
microphent > firter with || 4, LH —_ ..
cutoff ot . 2
2T.05 kHT

o filter preveants
d1ldsthy

* removed frequenties
tOnnet be detected
by humons

Hif)
o] ‘Fc= ZZ.GSKHZ
(T1
"Fc ‘Fc
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Example 6.39 (Communication channel equalization). Consider a LTI communication channel with frequency re-
sponse

_ 1
Unfortunately, this channel has the undesirable effect of attenuating higher frequencies. Find the frequency response
G of an equalizer that when connected in series with the communication channel yields an ideal (i.e., distortion-
less) channel. The new system with equalization is shown in Figure 6.24, where g and & denote the inverse Fourier

transforms of G and H, respectively. distors
istortioniess

channe|

X
] g > h —>—y X Y

Figure 6.24: System from example that employs equalization.

Solution. An ideal communication channel has a frequency response equal to one for all frequencies. Consequently,
we want H(@)G(®) = 1 or equivalently G(®) = 1/H(®). Thus, we conclude that

1
resreange G(o)=———
H(a])) Subsiitute gfven H
AR
<3+ja)) . .
Simpy
=3+jo. ) P 'Fy n
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Unit:
Partial Fraction Expansions



Example B.1 (Simple pole). Find the partial fraction expansion of the function
3 Strectly pro
f@Q)=5—— < (ctly proger
2 +3z+2
Solution. First, we rewrite f with the denominator polynomial factored to obtain

3
Q= ey «— Smpie (ie, 1%orger) potes
ot -1 and -2
From this, we know that f has a partial fraction expansion of the form

Aq Ar
7)=—+—,
/@) z+1  z+42 @
where A; and A, are constants to be determined. Now, we ‘calculate A; and A, as follows:
A= (z+1)f(2)],—_,

3
z+2|

=3 and @

Ay = (z+2)f(2)],—_»

3
Cz+1 ——
=-3.
Thus, the partial fraction expansion of f is given by
/&) z+1 z+2
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Example B.2 (Repeated pole). Find the partial fraction expansion of the function
Strictiy proger with
&— 2"% arder pote 2t -1 and
13% order gote ot -3

4748

@)= (z+12(z+3)

Solution. Since f has a repeated pole, we know that f has a partial fraction expansion of the form

terms contributed by ,’X1:-~—A—;;\; ,"A.;\',l/‘ term contributed by
Pofe 3t —» f(z):,'z+l+(z+1)2)—|_fz+3} 0 pole ot -3

[

where Aq1, A12, and Ay are constants to be determined. To calculate these constants, we proceed as follows:

& -Fcrmufa -for Cose o-f
répeoted pole

coefficient number | 4 o (2_11) [(d)z 1[(Z+1)2f(2)]]

Pote order

z=—1

11, (4 [+1)*f(z )]H:D subsiiute for +
[ (4”8)}
[

d
FlzH3 a=-1 v differentiaie
4(z+3 —1)(z+3)*(4z+38)] )]|.—

I
l_|

fermuta for Ccase of
regeated pole

Ma= gy [ e+ V0]
1

o1 [+ 1D/@)] |;)
4z+8
j ]

z=—1

z=—1
=2
=2, and
43 ¢— farmula for Case of
hers z=—3 Simpje pole
Z+
TS e substitute for f

Thus, the partial fraction expansion of f is given by

1+ 2 1
z+1 (z4+1)2 z+3°

substituie computed
Caeffreients iato @ W

f(z)=
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Unit:
Laplace Transform



- ¢® —ad
Relationship Between the Laplace and Fourier Transforms | X(Sj = S -°°Tx e dt

Recall the definition of the Laplace transform in (7.2). Consider now the special case of (7.2) where s = j® and
o is real (i.e., Re(s) = 0). In this case, (7.2) becomes

«— Tfrem definition of LT

X(jo) = [ [ Zx(t)e_“dt]

= /w x(t)e 7 dr
= Fx(w). from aefinctian of FT

s=jo

SubStitute jw far s

Thus, the Fourier transform is simply the Laplace transform evaluated at s = j®, assuming that this quantity is well
defined (i.e., converges). In other words,
X(jo) =Fx(w). (74)

Incidentally, it is due to the preceding relationship that the Fourier transform of x is sometimes written as X (jo).
When this notation is used, the function X actually corresponds to the Laplace transform of x rather than its Fourier
transform (i.e., the expression X (j®) corresponds to the Laplace transform evaluated at points on the imaginary axis).
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© -st
Relationship Between the Laplace and Fourier Transforms (General Case) | 2‘{ (.S) = -f - X(t) @™ at

Now, consider the general case of an arbitrary complex value for s in(7.2). Let us express s in Cartesian form as
s = 0 + jo where o and @ are real. Substituting s = ¢ + j® into (7.2), we obtain

e Substituting T +jw for s

X(G+jco):/ x(t)e (eH@N gy o LT defimtion

= /j; [x(t)g—ct]e—jwtdt
= F{ex()}(w). 4~ defmition of FT

Split exponeatial in two

Thus, we have shown
X(o+ jw) = Fle 'x(1)}(o). (1.5)

Thus, the Laplace transform of x can be viewed as the (CT) Fourier transform of x'(z) = e~ %"x(¢) (i.e., x weighted by
a real exponential function).
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Example 7.3. Find the Laplace transform X of the function
x(t)=e “u(t),
where a is a real constant.

Solution. Lets = o+ jow, where ¢ and @ are real. From the definition of the Laplace transform, we have

X(s)=L{e "u(r)}(s) definition of LT

:/ e “u(t)e dt

= ‘) cembine expencntipls and use u
:/ e*(ﬁL“)ldt +a change Iimits

0

— = ()] [ integrote

0

At this point, we substitute's = ¢ + j@ in order to more easily determine when the above expression converges to a
finite value. This yields

real expcnentiol _ [(_ 1 ) —(O‘+a+ja))t:| ”

o O+8%0 X(s) cratjo )¢ o) foctor 2nd Split exponentisis
®© o+a<o0 _ ( —1 ) {e—(aﬂz)tefjwt} “

Camplex Siausaid oo 0 ) toke d fference

£inite bug limit — ( -1 ) {e—(ﬂa)ooe—jwoo_ 1] .

does not exist otatjo -

""_-v——~—l
td

X(5) = (aratia) 0-1] it Re(s)>-a
— (;Tla) (_1) rewerite ‘n ferms of § ($=6‘+jw)
1 () Sim
=—. pif;
s+a Y
Thus, we have that Note: We must specify thys
e~ u(r) <L s%a forRe(s) > —a. " 3'°" of convergence siace

5+a 'S net correct for M sEC
The region of convergence for X is illustrated in Figures 7.2(a) and (b) for the cases of a > 0 and a < 0, respectively.

Im(s) / Re(s) >-a Im(s) Rels) > -aq

¢

)i( Re(s) )i( Re(s)

(a) (b)

Figure 7.2: Region of convergence for the case that (a) a > 0 and (b) a < 0.
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Example 7.4. Find the Laplace transform X of the function
x(t) = —e "u(—t),
where @ is a real constant.

Solution. Lets = 0+ jo, where ¢ and  are real. From the definition of the Laplace transform, we can write

X(s) = L{—e""u (—t)}(S)

_/ e u(—t)e " dt
‘) use u to chvngc limyds
:/ _efatefstdt
—oo ) Combine exponentials
:/ s+a tdl

= {(Ha) ﬁ

In order to more easily determine when the above expression converges to a finite value, we substitute's = ¢ + j®.

This yields /
real exponéntia| 10
X(S) _ [(;) e—(6+a+j(u)t]

de-r-'m'i-n'on O-F LT

0 Integrote

0 o+a<ko oTaTi® . |
o 6+3>0 . Sle: exponential
= (;) [e (o+a)t —j(Ot:| D
Compiek Stausoid Gtatjo ?
finite but Limst not _ (é) {1 Jo+a)mg jm toke difference
well def{inea ctatjo K .

Thus, we can see that the above expression only converges for o +a < 0 (i.e., Re(s) < —a). In this case, we have

X(s) = (ﬁw) [1-0] i4 Re(s)<-a

1 .
_ . rewrite in terms of s (s=o
o C +Jw)
Thus, we have that / Note: We must specify this
r‘egnon of Convergence since
—e Mu(—1) ta for Re(s) < —a. aot correct
s+a is ect for 2l SEC

The region of convergence for X is illustrated in Figures 7.3(a) and (b) for the cases of @ > 0 and a < 0, respectively.

Re(s)<-2 ‘“‘)/ Im(s) Re(s) <-a —l Im(s)

)i( Re(s) )i( Re(s)

(@) (b)
Figure 7.3: Region of convergence for the case that (a) a > 0 and (b) a < 0.
qifferent some different (9nd 4his (s critiea) Tor invertibilily

s S bl of LT
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Example 7.7. The Laplace transform X of the function x has the algebraic expression

s—|—%

(s2+25+2)(s* +5-2) rotions| funetvon

X(s) =

Identify all of the possible ROCs of X. For each ROC, indicate whether the corresponding function x is‘left sided,
right sided, two sided, or finite duration.

Solution. The possible ROCs associated with X are determined by the poles of this function. So, we must find the
poles of X. Factoring the denominator of X, we obtain

. these facters obtained
st3 by using quadratic formu iy

(sFEL=NEF1IE)(s+2)(s—1)

X(s)=

Thus, X has poles at —2, —1 — j, —1+ j, and 1. Since these poles only have three distinct real parts (namely, —2, —1,
and 1), there are four possible ROCs:
i) Re(s) < =2,

i) —2 <Re(s) < —1,

iii) —1 <Re(s) < 1, and

iv) Re(s) > 1.
These ROCs are plotted in ‘Figures 7.8(a), (b), (c), and (d), respectively. The first ROC is a left-half plane, so the
corresponding x must be left sided. The second ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the
corresponding x must be two sided. The third ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the
corresponding x must be two sided. The fourth ROC is a right-half plane, so the corresponding x must be right sided.

ROC is LHP —"—"fﬁ"—ifn? X is teft sided ROC rs Strip —‘;—FiL) X is two Sided

SEE. BEEE:
| [ |
R Dl xo+
I | I
1 1 1 1 1 I 1 1
) S B A T T AT T R
loX -1t N
| | |
J— et
(@) (b)
: 4
RoC is strip mﬁlf’—é X is two sided ROC +g RHP—?I‘.—OP—‘—‘—W——> X Vs right sided
m m
EEIN N
| | |
X1+] X1+ 1
I L | I
1 I 1 1 1 1 1 1
R R
X-11| X-1+
| | |
2t 21
© (d)

Figure 7.8: ROCs for example. The (a) first, (b) second, (c) third, and (d) fourth possible ROCs for X.
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Example 7.8 (Linearity property of the Laplace transform). Find the Laplace transform of the function

X = X1 +x2,

where

x1(t)=e"u(r) and xp(r) =e "u(t) —e 2 u(r).

Solution. Using Laplace transform pairs from Table 7.2, we have

® X1(S)=£{@”u(t)}(5)'_ﬁ from LT #3ble

1
=1 for Re(s) > —1 and

® Xxw=c&ﬂwn—f%w»@>———:>, eor
in '+
= L{e " u(t)}(s) — L{e u( ’

from LT tabje and
_ 1 for Re(s) > —1 D fe oo @

s+1 s+2 D
. Commen denominatbopr
- forR —1.
Grnery R
So, from the definition of X, we can write ® [Rc ©” -2] ! (RCCS) ’ —)]
L = )
X(s) = L{x1 +x2}(s D hinear ity Rels)>-1
=X;(s)+Xa(s

1

Subgtitute efo‘eSSIons for

= +
s+1 (S+1)(S+2) Xy ond %z in () 2na @
_ s+2+1 ‘)Ct\ .
= 7(s+1)(s+2) mmon denoeminator

s+3 D .
_ ST
- (s+1)(s+2) : mP“‘)‘ but rs t 1arger -thaﬂ
/' the intersection ?
Now, we must determine the ROC of X. We know that the ROC of X must contain the intersection of the ROCs of X
and X;,. So, the ROC must contain Re(s) > —1. Furthermore, the ROC cannot be larger than this intersection, since

X has a pole at —1. Therefore, the ROC of X is Re(s) > —1. The various ROCs are illustrated in Figure 7.9. So, in
conclusion, we have

(s) = s+3

R for Re(s) > —1. [
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Figure 7.9: ROCs for the linearity example. The (a) ROC of Xj, (b) ROC of X3, (c) ROC associated with the
intersection of the ROCs of X; and X5, and (d) ROC of X.
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Example 7.9 (Linearity property of the Laplace transform and pole-zero cancellation). Find the Laplace transform X
of the function

et uw)
t

X, ()
X2 t)

1]

X =X1 — X2,

- -2t
where x; and x; are as defined in the previous example. e utt)-e u it

Solution. From the previous example, we know that
= for Re(s) > —1 and
s+

®  x()
1

B X(s)= GG for Re(s) > —1.

froem LT top)y

From the definition of X, we have

X(s) = L{x; *XZ}(S)D ﬁnea({-}y

=Xi1(s) —Xa(s)

1 B 1 Subsi‘i-bul:.‘nq exgpegsfcn_;
s+1 (s+1)(s+2) for Xy 2nd Xy 1n @ snd @

__s+2-1 / .

) ¢emmon denominster

_ s+l D Simplify numeratee

S (s+1)(s+2) pirfy

= 41_2, l_) C2ncel COmmon -FQO'EOI" of S+1
s

Now, we must determine the ROC of X. We know that the ROC of X must at least contain the intersection of the
ROCs of X; and X,. Therefore, the ROC must contain Re(s) > —1. Since X is rational, we also know that the ROC
must be bounded by poles or extend to infinity. Since X has only one pole and this pole is at —2, the ROC must also
include —2 < Re(s) < —1. Therefore, the ROC of X is Re(s) > —2. In effect, the pole at —1 has been cancelled by
a zero at the same location. As a result, the ROC of X is larger than the intersection of the ROCs of X; and X,. The
various ROC:s are illustrated in Figure 7.10. So, in conclusion, we have

1
X(s)= 12 for Re(s) > —2. ]
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Figure 7.10: ROCs for the linearity example. The (a) ROC of Xj, (b) ROC of X;, (c) ROC associated with the
intersection of the ROCs of X; and X5, and (d) ROC of X.
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Example 7.10 (Time-domain shifting property). Find the Laplace transform X of
}abre of LT pairs x(t) =u(t—1).

Solution. From Table 7.2, we know that

s for Re(s) >0. <« from LT tabie

u(t
Using the time-domain shifting property, can deduce "‘:y' :' e S'V \ROC unchenged
Shift by | 1

*S
x(t) =u(r—1) (1) forRe(s

Therefore, we have
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nat Strictly
necessacy
exctept to ﬁ
check
answer

Example 7.11 (Laplace-domain shifting property). Using only the properties of the Laplace transform and the trans-
form pair

eI s 5 for —1 <Re(s) <1,
s

find the Laplace transform X of
x(1) =e”e .
Solution. We are given

LT 2
e M, T for —1 <Re(s) < 1.

a ) Shift RaC
Using the Laplace-domain shifting property,jwe can deduce s:'f; s by 5
b
muitiply by es't o 2
x(t) = EStei‘tl —— X(S) = m fOI' —1 +5 < RC(S) < 1+5,
4+ 6
Thus, we have
X(S) = m for 4 < Re(S) < 6.
Rewriting X'in factored form, we have
2 2 2 -2 -2

X = = = = == .
(5) 1—(s—=5)2 1—(s>—10s+25) —s>+10s—24 s>—10s+24 (s—6)(s—4)

Therefore, we have

for 4 < Re(s) < 6. [ |

Sanity theek

dre Stated 3igebraic exgresSien
6 Re ond Stzted RocC
self wonsisteat?

e m e oe. .
B T R

yes, ROC baunded by poles

Edition 2020-04-11 Copyright (©) 2012-2020 Michael D. Adams




nat
strictly
ﬂm“bfy
excepl
°s
ganity
check

Example 7.12 (Time-domain scaling property). Using only properties of the Laplace transform and the transform
pair

2
Eilt‘ (i) 1_72 for —1 < RC(S) < 1,
find the Laplace transform of the function

x(t) = e 1,

Solution. We are given

e for —1 <Re(s) < 1.

. . . ; +ime 9nd ROC setates by 3
Using the time-domain scaling property, /we can deduce | amptitude scate

1 —s?

time Scale by 3 1
x(t)=e P X(s) = 55 for3(—1) <Re(s) < 3(1).
13| 1_(3) e~ e

=3 3
Thus, we have

2
X(s) = =7 for =3 <Re(s) < 3.
3[1-(3)7]
PSimplifying, we have
2 2 2(9) 6 -6
X = = = = = .
() 3(1_%) 3(9552) 39-52) 9-s* (s+3)(s—3)
Therefore, we have
X(s) = - for -3 <R : |
i (s) GE36-3) or —3 <Re(s) <3
Im Sonfty Che¢k:
5 E 2re sitoted bdlgebrase
' : expressfon ond Stoted
-3 X ',‘3 Re ROC selif econsistent ?
! ]
]
! ; yes, ROC is bounded

by pales
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Example 7.19. Using properties of the Laplace transform and the Laplace transform pair

—2a
(s+a)(s—a)

el for —a < Re(s) < a,

find the Laplace transform X of the function

x(t) = e 3T

Solution. We begin by re-expressing x in terms of the following equations: San ”-'\/ Check:
® vi(t) = e, X(£)= Vval3d)
® va(t) =vi(t—7), and = v (3¢-7)

— _=5|3t-
€)) x(t) = v2(31). = o Sl3t-l

In what follows, let Ry,, Ry,, and Ry denote the ROCs of V1, V,, and X, respectively. Taking the Laplace transform of
the above three equations, we obtain

_ 10 - ¢— fcom LT of @ using
- 7 —(_ ro

@ Vis) G15)6=3) Ry, = (—5 <Re(s) < 5), A

@ Vz(S):e_”Vl(s), Ry, =Ry,, € from LT of @ using

1 ~do Shi -t
) X(s)= 3va(s/3), and Ry =3Ry,. < me-demain Shifting propecty
feom LT of @) using

+rme ~5Cling greo pe:«by

—_— X fV 3
@ (5) 2(s/3) ) substituting & For Vo

1 77(5/3 3
) mvlt-p|y

:l _75/3V s/3)
3¢ / —w Subsi!i:uf.lnq @ far vV
1,-7s/3
3

(s/34+5)(s/3-5)

Combining the above equations, we have

@ —_— Rx=3Rv2> substituting ® for Ryz

_3RV1 "_—'__7 substituting @ for Ry,

= —15 < Re( ) < 15. D ruitiply

Thus, we have shown that

—10
or —15 < Re(s) < 15. [ ]

s5)=1Lte 7/
X(s) =3¢ 3(s/3—|—5)(s/3—5) f
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Example 7.13 (Conjugation property). Using only properties of the Laplace transform and the transform pair

i LT 1
e<717})tu(l‘> — ﬁ for Re(s) > _1,
— s J
v(t)
find the Laplace transform of Vi(s)

x(t) = e ().

Solution. To begin, let v(t) = e(=1="u(t) (i.e., v is the function whose Laplace transform is given in the Laplace-
transform pair above) and let V denote the Laplace transform of v. First, we determine the relationship between x and
v. We have

_ [e(*lfj)’u(t)} u is real
=v(t). feam definition of v
Thus, x = v*. Next, we find the Laplace transform of x. We are given
W(1) = () s V(s) = ﬁ for Re(s) > —1.
Using the conjugation property, we can deduce l ;::j‘:i?reans ) RaC unchanged

Conjugote

x(t) = () X(s):( !

_ for Re(s) > —1.
s*+1+j> (5)

Simplifying the algebraic expression for X, we have

1 * 1* 1
X(s) = ) = — = .
st 147 [s*+ 1+ s+1—j

Therefore, we can conclude %)g :; (2,42 ,_‘)*2 Z',“ +3 ;
2
X(s) = —— forR > —1. |
(s) o or Re(s)

Senity Cheek:

yes, the RAC ss bounded

fmn
! ore the Stated dlgebraie
h l expression 9nd Stated
..1': Re ROC self conststent?
]
)

by pofes or extends to +oo

Edition 2020-04-24 Copyright (©) 2012-2020 Michael D. Adams




Example 7.14 (Time-domain convolution property). Find the Laplace transform X of the function
x(t) = x1 xx2(1),
where
LT toble x1(t) =sin(3t)u(t) and  x(r) = tu(t).

!

Solution. From Table 7.2, we have that

. LT 3
x1(¢) =sin(30)u(t) «— Xi(s)= 759 for Re(s) >0 and from LT tabie

xa(t) =tu(t) +— Xa(s) = slz for Re(s) > 0.

ROC €quals intersection
Sinte no pole-zera concellaiion

Kt () = 1) € X(s) = <322<s12> for {Re(s) > 0} 1 {Re(s) > 0}.

Using the time-domain convolution property, we have

s2+9
conuowe muitiply
The ROC of X is {Re(s) > 0} N{Re(s) > 0} (as opposed to a superset thereof), since no pole-zero cancellation occurs.
Simplifying the expression for X, we conclude

3
X(S):m for Re(s) > 0. AnNA=A -
——
(5+35)(s-3;5)
" sonity Check =
3 ore the sioded digebrare
R expressicn and Stated ROC
e
seif consfstent 7
- yes, the Rac s bounded

by pales or exicads 40 T
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Example 7.15 (Time-domain differentiation property). Find the Laplace transform X of the function
LT toble x(t)=45(1).
Solution. From Table 7.2, we have that

8(t) «+ 1 foralls.
ROC Contasns

Using the time-domain differentiation property,fwe can deduce multiply orr
d ijferentivte by § rfaindt RoC
x(t)=48(t) « X(s)=s(1) foralls.
—

Therefore, we have S

X(s)=s foralls. -

obviously , ROC
tInnot be tacge

" Sentty checy -
are the stated 2igebra(c
expressicn pnd Stoted RacC

self censistent?
yes, since no pcles, ROC
filis entire plone

Re
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Example 7.16 (Laplace-domain differentiation property). Using only the properties of the Laplace transform and the
transform pair

e 2u(r) for Re(s) > —2,

s
find the Laplace transform of the function

x(t) =te Hu(t).
Solution. We are given

LT 1
e Hu(t) o) for Re(s) > —2.

Using the Laplace-domain differentjation and linearity properties, we can deduce
multiply by ¢ -d/ds Roct unchanged

x(t) = te 2 ur) <55 X(s) =4 <s+12> for Re(s) > —2.

Simplifying the algebraic expression for X, we have

x(s>=—5’s( 1 ):—i<S+2)‘=<—1>(—1>(S+2)2:<s+12>2'

s+2

Therefore, we conclude

1
X(s)fi(s_i_z)2 for Re(s) > —2. |
( e Sanity Check:
: ore the stated algebraic
; expression and Staded
-2 " Re RocC seif consistent?
[}
X yes, the ROC is baunded
]

by poles or extends 4o +co
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Example 7.17 (Time-domain integration property). Find the Laplace transform of the function

t
LT table x(t) = / e 2 sin(v)u(7)dr.
. oo
Solution. From Table 7.2, we have that
LT 1
e Hsin(tu(t) Gr2rT1 for Re(s) > —2. o
ROC is intersected
Using the time-domain integratiofi property, we can deduce | ™witiply with Re(s)*Q
inteqerate by /8 (Connot be larger since
4 1
27 . no
x(t) = e Fsin(t)u(t)dt +— X(s for {Re(s) > —2} N{Re(s) > 0}. poles
(0= [ _e*sin(@ar) (ar) o (Rel)> ~2)0 (Rels) > 0) )
SnmPllF Rets) >0

The ROC of X is {Re(s) > —2} N {Re(s) > 0} (as opposed to a superset thereof), since no pole-zero cancellation
takes place. Simplifying the algebraic expression for X, we have

N U T A B S VN
5 (s+2)241) s\ s2+4s+44+1) s\ s2+4s+5)°

Therefore, we have

for Re(s) > 0.

1
X =4y

[Note: s* +4s+5= (s+2—j)(s+2+j).] (s+2-))(s+2+)) [
lm

; S@nity check s
: 'T ore the Stated dlgebraic
" sk Re expressicn and stated

~2 ! RoC self Consistent?
X 1 yes, the RAC 7s bounded
! by poies or extemds 4o to0
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Example 7.18 (Initial and final value theorems). A bounded causal function x with a (finite) limit at infinity has the
Laplace transform

257 43s+2

X($)=5—F5— .
(s) S22 128 for Re(s) >0

Determine x(0") and lim, e x(?).

Solution. Since x is ‘causal (i.e., x(¢) = 0 for all r < 0) and does not have any singularities at the origin, the initial
value theorem can be applied. From this theorem, we have

o
x(0) = lim 5X(s) /v Subst/tute qiven X
2s2+3s+2]

=i Bl N N
o’ [s3 +252+2s
my.l-l-ip[y

= lim

s 2 £ 25+ 2
Y / toke Iim't (htghcs-!: power terms

dotm'nate)

Since x is'bounded andcausal and has well-defined limit at infinity, we can apply the final value theorem. From

this theorem, we have
lim x(¢) = limsX (s)
e s=0 ) Substitute givea X
. [ 252 +354+2 }
= lims
s—0

3 2
3 +2s +(is) s It 11y
B 252 +3s5+2
===
s Jﬁiz_sD evdluate ot $=0
=1.

In passing, we note that the inverse Laplace transform x of X can be shown to be

x(t) = [1+e " cost]u(t).

As we would expect, the values calculated above for x(0™) and lim,_,.. x(¢) are consistent with this formula for x. W
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Example 7.25. ‘Using a Laplace transform table and properties of the Laplace transform, find the Laplace transform
X of the function x shown in Figure 7.13.

x(t)

1

0

Figure 7.13: Function for the Laplace transform example.

Second solution (which incurs less work by avoiding differentiation). First, we express x using unit-step functions to
yield

x(t) = tlu(r) —u(t — 1)]

=ru(t) —rtu(t—1).
add and subtract
To simplify the subsequent Laplace transform calculation, we choose torewrite x as ulce-1)

group two middie teems
toqether

x(t) =tu(t) —ru(t—1)+u(t—1)—u(t—1
—(@—=Du(@—1)—u(t—1). )

L =tu(t)

taKing

LT (This is motivated by a preference to compute the Laplace transform of (z — 1)u(z — 1) instead of fu(f — 1).) Taking

the Laplace transform of both sides of the preceding equation, we obtain _’I 'L
Fult) timeshifted by 1 ult) time Shefled
X(s) = L{tu(t —L{(t—1Du(r—1 —L{u(t—1 .
(s) = £{ru(0)}(s) = £{( = Dult — D}(s) = £{ut — D). G by | and then

v—

We have O ® ® muitipiied by t
X (requires differeatiotian)
Q L{u@}s) =, é— from LT toble

+ime Shift u‘ng

@ it —1ult—1)}(s)= e Liru(r)}(s)

L) LT toble

Combining the above results, we have

Substituting ©, @, and ©) X(s) = 1 e’ e
into & 2 52 s
l—e™—se*
= .
Since x is finite duration, the ROC of X is the entire complex plane. |
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Example 7.27. Find the inverse Laplace transform x of

2

X(§s) = ———
(s) s2—5—2

for —1 < Re(s) < 2.

Solution. We begin byrewriting X in the factored form

2 Strictly proper with
X(s):m' € 1% arder potes 2t ~1 and 2

Then, we find a partial fraction expansion of X. We know that X has an expansion of the form

Ay n Ar
s+1 s=2°

X(s) =
Calculating the coefficients of the expansion, we obtain

Ay = (s+1)X(s)]= 4
2

Ay = (s =2)X(s) ;=

So, X has the expansion -1<4Rels)<2

¥
X(s)zi(s12> _g (lerl)'

Taking the inverse Laplace transform of both sides of this equation, we have

LT toble x(f):§Ll{siz}(f)—iﬁl{sil}(t)- (7.6)
Using Tab'jlle 7.2 and the given ROC, we havle__--&:)~h-J ®
/ © —u(—1) 1 for Re(s) <2 and ROC <+ conta;
- 1< Re(s) 42 s—2 mu atain
@ e u(t) «— H—% for Re(s) > —1. “1<Rels) <2

(see ) snad ®)

substituting the inverse LTS
x(t) = 2= u(~1)] - 2[e~tu(r)] &~ From @ 3nd ©

Im =—2eMu(—t)—%e'u(r). o B

® |xPe ® ,,‘

Substituting these results into (7.6), we obtain

i 4 7% :
Posslb"t ROCs -1 2 passibie ROCS -1 2 Re
for 3 for A

—> S+1 ¢ \
~1¢re(s)<Z -1<Re(s) <2
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Example 7.28 (Rational function with a repeated pole). Find the inverse Laplace transform x of

2511 r‘ Steretly proper with 15t order Ppoge
X(s)=——"— % forRe(s) > —1.

ot -2 a2nd 274 ocd -
(s+1)2(s+2) or ] ocder Pcie 3t -1

Solution. To begin, we find a partial fraction expansion of X. We know that X has an expansion of the form

terms from pole 3t -1 .—_\\r;{-ﬂ ----- 1-4-1-2---: A
X(s)= i
(s) = s+l (sH1)A ist2

Calculating the coefficients of the expansion, we obtain

25+ 1
e | el (4 Mo 00|~ 4 ool - [# (2]
repeted gole Case s=-1 s+ s=—1
Coetficient _ [( )( ) (ZSJF 1)(1):| _ |:25+4251:| _ [3] _3
index \ (s+2)? s=—1 (s+2)? =1 L2y 7
gale 2s+1
1 d 2 1 2 ~1
arder Ay () 6+ 02XE)]]| =& 6+ X)), = 2| oo and
2s+1
foemuly for 5 o o _ =3 _
s:mplt pole Case A = (DX = CEE VS R ’
Thus, X has the expansion Rets)s-1
X%s) 3 13
sl (sH1D2 0 s42]
Taking the inverse Laplace transform of both sides of this equation yields
(1)=34"" 1 () — L1 ! (1) —3L7! 1 (1) (7.7)
x(t) = - - . ‘
s+1 (s+1)2 s+2
T-Re()>-) L Rets)>-y 2 ReCs)>-2

At this point, it is important to remember that every Laplace transform has an associated ROC, which is an essential
component of the Laplace transform. So, when computing the inverse Laplace transform of a function, we must
be careful to use the correct ROC for the function. Thus, in order to compute the three inverse Laplace transforms
appearing in (7.7), we must associate a ROC with each of the three expressions H_Ll, G 4_11)2, and +2 Some care must
be exercised in doing so, since each of these expressions has more than one possible ROC and only one is correct.
The possible ROCs for each of these expressions is shown in Figure 7.16. In the case of each of these expressions, the

correct ROC to use is the one that contains the ROC of X (i.e., Re(s) > —1).

poles and pessible RaCs for poles and passibie RACS far
e ond —— Im A Im
S+l (s+1)* S+2
1 |
1 |
| |
| |
|
| R — R
-1 © " e
| |
| |
| |
1 I
|
I«—L—'.. ! 6—_ es o
(a) Re(s)>~1 (b) Re () >-]

Figure 7.16: The poles and possible ROCs for the rational expressions (a) SJ%I and (H%)z; and (b) SJ%Z
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LT tobre ! afd ~r
i X()= 3L '{EIT}“’) - L '{(su)z}(*) - 3L {s+z}(*) (7.7)
From Table 7.2, we have 1 Relsy>-! £ Rets) >~ L Re(s)>-2
© eu(t) < g forRe(s) > —1,
® te'u(t) «— ﬁ for Re(s) > —1, and
® e 2u(t) +— L5 forRe(s) > —2.

Substituting these results into (7.7), we obtain

J substituting ©, @, 2a¢ ® into (7.7)
x(t) =3¢ "u(t) —te "u(t) — 36_2tu(t)
= (3" —te" — 3e ) u(r). n
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Example 7.31. For the LTI system with each system function H below, determine whether the system is causal.
1
(@) H(s) = 1 for Re(s) > —1;

rationvl 5+ causal = ROC s RHP
(b) H(s) = — T for —1 <Re(s) < 1; .
o ft rotionar :  Causal & RAC 1s RHP
not (c)H(s) = P for Re(s) < —1; and
ratfona | e
(d)H(s)—s_H for Re(s) > —1.

Solution. (a) The poles of H are plotted in Figure 7.19(a) and the ROC is indicated by the shaded area. The system
function H is rational and the ROC is the right-half plane to the right of the rightmost pole. Therefore, the system is
causal.

(b) The poles of H are plotted in Figure 7.19(b) and the ROC is indicated by the shaded area. The system function
is rational but the ROC is not a right-half plane. Therefore, the system is not causal.

(c) The system function H has a/left-half plane ROC. Therefore, & is a left-sided signal. Thus, the system is not
causal.

(d) The system function H has a right-half plane ROC but is not rational. Thus, we cannot make any conclusion
directly from the system function. Instead, we draw our conclusion from the impulse response /. Taking the inverse
Laplace transform of H, we obtain

h(t):e_(H'l)u(tJrl). &«— not causa| funetion

. _ . Sfnce hiy) #£0 For t€(~1,0)
Thus, the impulse response £ is not causal. Therefore, the system is not causal.

Im Im

H (s rolienal &nd
ROC s RHP =

h rs tousal

]
[}
I
: H rs rotiona) ond
[}
* Re — %1% Re ROC fs not RHP =
[}
[}
|
]
|
[}

h rs not cousal

(@) (b)

Figure 7.19: Pole and ROCs of the rational system functions in the causality example. The cases of the (a) first
(b) second system functions.
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Example 7.32. A LTI system has the system function

1
(s+1)(s+2)°

H(s) =

Given that the system is BIBO stable, determine the ROC of H.

Solution. Clearly, the system function H is rational with poles at —1 and —2. Therefore, only three possibilities exist
for the ROC:
i) Re(s) < -2,
i) —2 <Re(s) < —1, and
iii) Re(s) > —1.
In order for the system to be stable, however, the ROC of H must include the entire imaginary axis. Therefore, the
ROC must be Re(s) > —1. This ROC is illustrated in Figure 7.20.

@ Im@

This ROC contains the
/ im2ginacy axis.

|
I
|
I
:
|
S ke
I
|
|
I
|
I

Figure 7.20: ROC for example.
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Example 7.33. A LTI system is'causal and has the system function

1

HO) = @it

Determine whether this system is BIBO stable.
Solution. We begin by factoring H to obtain

1

H(s) = G+2) G+l Hi+ritj)

(Using the quadratic formula, one can confirm that s24+2s+2=0hasrootsat s = —1 + Jj.) Thus, H has/poles at —2,
—1+ j, and —1 — j. The poles are plotted in Figure 7.21. Since the system is causal and all of the poles of H are in

the left half of the plane, the system isstable. 'l‘_ Since Cousal, ROC of H
) o

O Im @ ‘-S RHP

This ROC /s RHP,
1+ This ROC contzins

fma29linary 2xis.

|

I

|
Three QoSSibilities X

exist for the ROC |

zs 715 Re

o} H @s shown. !
X

|

|

|

|

-1+

Figure 7.21: Poles of the system function.
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Example 7.34. For each LTI system with system function H given below, determine the ROC of H that corresponds
to a BIBO stable system.

.
@ H(s) = (s+2)(s+8(1s+;))s(s+1—j);

(b) H(s) = (S+1)(si1)(s.,17j)(s,1+j); T 3l rational functions
©HE) =1 +<; fjigilﬁ 7y end

() H(s) = J

Solution. (a) The function H has/poles at =2, —1+ j, and —1 — j. The poles are shown in Figure 7.22(a). Since
H is rational, the ROC must be bounded by poles or extend to infinity. Consequently, only three distinct ROCs are
possible:
i) Re(s) < -2,
il) —2 <Re(s) < —1, and
iii) Re(s) > —1.
Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be Re(s) >
—1. This is the shaded region in the Figure 7.22(a).
(b) The function H haspoles at —1, 1, 1+ j, and 1 — j. The poles are shown in Figure 7.22(b). Since H is rational,
the ROC must be bounded by poles or extend to infinity. Consequently, only three distinct ROCs are possible:
i) Re(s) < —1,
ii) —1 <Re(s) <1, and
iii) Re(s) > 1.
Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be'—1 <
Re(s) < 1. This is the shaded region in Figure 7.22(b).
(c) The function H has poles at =2+ j and —2 — j. The poles are shown in Figure 7.22(c). Since H is rational,
the ROC must be bounded by poles or extend to infinity. Consequently, only two distinct ROCs are possible:
i) Re(s) < —2and
ii) Re(s) > —2.
Since we want a stable system, the ROC must include the entire imaginary axis. Therefore, the ROC must be Re(s) >
—2. This is the shaded region in Figure 7.22(c).
(d) The function H has a'pole at 0. The pole is shown in Figure 7.22(d). Since H is rational, it cannot converge
at 0 (which is a pole of H). Consequently, the ROC can never include the entire imaginary axis. Therefore, the system
function H can never be associated with a stable system. |
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This ROC
contains
This ROC +he ; :
Im Im he imdginary
© ® "0 / e o om/@ e
2 the 'maginary 27T I
: XS, : : (-1« Re(Cs) < (_}
>:< YT [Ret.s)>—(] : LT >:<
I 1 1 1 \J( * 1
=% i L ¢
X1t R
1 Y
| | |
(a) (b)
Im This ROC Im
@ | contains @ @
I 27 ihe 1maginary 2T
):( 2K1'S. Ne-'ibe.- ROC
| : [Recs) >-2] : tontsins the
L +——+— Re ——+—X—+—+—Re '™M?9indry PXIS.
2 -1 I 2 2 2
X —1 1 i
|
: -2+ -2+
() (d)

Figure 7.22: Poles and ROCs of the system function H in the (a) first, (b) second, (c) third, and (d) fourth parts of the
example.
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Example 7.35. Consider the LTI system with system function

_s—l—l

for Re(s) > —2.
s+

H(s)
Determine all possible inverses of this system. Comment on the stability of each of these inverse systems.

Solution. The system function H;,, of the inverse system is given by

I s+2
H(s) s+1°

I'Iinv(s) =

Two ROC:s are possible for Hi,,:

i) Re(s) < —1 and

ii) Re(s) > —1.
Each ROC is associated with a distinct inverse system. The first ROC is associated with an unstable system since
this ROC does not include the imaginary axis. Thesecond ROC is associated with a stable system, since this ROC
includes the entire imaginary axis. |

0 lm regfon (D dces nat Contain
the imaginary 2Xis 2nd
therefore corcesponds to an

unstoble System
Re

region @ cantains the
imdginary axis 8nd therefore

Corresponds to 2 Stoble
SysStem

-— - —-x-——*—
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Example 7.36 (Differential equation to system function). A LTI system with input x and output y is characterized by
the differential equation

V') + 57y (0) + 3y (1) = x(e), —

where D, K, and M are positive real constants, and the prime symbol is used to denote derivative. Find the system
function H of this system.

Solution. Taking the Laplace transform of the given differential equation, we obtain

+3kn‘n9 LT bsfn’

time ~domain different o,
P""Pcl"l:y e

s7Y (s) + DY (s)+ KY(s) =X(s).

Rearranging the terms and factoring, we have

o

(s*+ Bs+ EVy(s) =X (s). reerrange {erms ond factor

Dividing both sides by (s2 + %s + %) X (), we obtain
© divide both sides by
Y (s 1
= . z, B K
X(s) 2+85+ K (s +MS+K)¥LS)
Thus, H is given by
| Yis) = X(5)H¢S) =2
H(s) = —F—- H(s) = Yes) [
) 2+ Dyt K ) XSy

Edition 2020-04-11 Copyright (©) 2012-2020 Michael D. Adams




toke

{nverse

LT
(and use

tineanty)

Example 7.37 (System function to differential equation). A LTI system with input x and output y has the system
function
s

H(S):m,

where L and R are positive real constants. Find the differential equation that characterizes this system.

Solution. Let X and Y denote the Laplace transforms of x and y, respectively. To begin, we have
&— System is LTI
Y(s)=H(s)X(s) .
S w Substitute given H
— () x()
s+R/L

multiply both sides by
(s+R/L)

(s+ F)Y (s) = sX(s) .
ZSY(S) + By (s) = SX(;)-,) Simplify

Rearranging this equation, we obtain

Taking the inverse Laplace transform of both sides of this equation (by using the linearity and time-differentiation
properties of the Laplace transform), we have

TR LY+ LY (O =LK ()} ) Hime - domain
= 0+ D) =), ffecentiotien progerty

Therefore, the system is characterized by the differential equation

YO+ (1) = Gx(1). u
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Example 7.38 (Simple RC network). Consider the resistor-capacitor (RC) network shown in Figure 7.24 with input v,
and output v,. This system is LTI and can be characterized by a linear differential equation with constant coefficients.

(a) Find the system function H of this system. (b) Determine whether
step response of the system.

the system is BIBO stable. (c) Determine the

i R
? Q
—> H
T Ri(b t T
Vi c —— V2
| Cirnw | |
O O
Figure 7.24: Simple RC network.
Solution. (a) From basic circuit analysis, we have
vi(t) =Ri(t) +v2(t) and (7.14a)
i(t) = Cgva(t). toking LT (7.14b)
Taking the Laplace transform of (7.14) yields
Vi(s) =RI(s)+Va(s) and (7.15a)
I(s) = CsVa(s). . (7.15b)
Subst.tute

Substituting (7.15b) into (7.152a) and rearranging, we obtain

Vi(s)
= Vi(s) = RCsVi(s) + Vo(
= Vi(s) =[1+RCs]Va(s)
%
= 2o(s) _ | .
Vi(s) 1+RCs
Thus, we have that the system function H is given by
1
ten H(s) =
. 1+RCs
) 1
| )
2l 1
] i\ Re s+ RC
%! _ &)
= —.
s—(—zc)

€7.15b) into (7.153)
ta eliminote T

(8) = R[CsVa(s)] + Va(s)
_y fac-bor'

red rfange

V2(s) = v,(s) H(s) ==
RH{s) = vz (9
Vi¢s)

divide numerstor and dencminator

by RC

explicréy Show poles

Since the system can be physically realized, it must be'causal. Therefore, the ROC of H must be aright-half plane.

Thus, we may infer that the ROC of H isRe(s) > —RLC. So, we have

H(s)

= for R
TrRCs o e(s) >

J
see @
-

(b) Since resistance and capacitance are (strictly) positive quantities, R > 0 and C > 0. Thus, —I% < 0. Conse-

quently, the ROC contains the imaginary axis and the system is'stable.
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(c) Now, let us calculate the step response of the system. We know that the system input-output behavior is
characterized by the equation .
o Since System 15 LTI
Va(s) = H(s)Vi(s)
1 ) Substitute for H
= ( > V1 (S)

1+ RCs

To compute the step response, we need to consider an input equal to the unit-step function. So, vy = u, implying that
Vi(s) = % Substituting this expression for V; into the above expression for V,, we have

%0~ (i) (3)

1 .
R divide numerater 2nd dencminator

s(s+ge) by rc

LT
Vil =ult) <> Vls) =

Now, we need to compute the inverse Laplace transform of V; in order to determine v,. To simplify this task, we find
the partial fraction expansion for V,. We know that this expansion is of the form

A Ay
N S+I;T.

Va(s)

Solving for the coefficients of the expansion, we obtain

A1 = sVz(S) |S:0

=1 and

Ar=(s+ge)Vals)l 1
="RC

1

_ RC

=TT

RC

=1

Thus, we have that V; has the partial fraction expansion given by

1 1

V2<S):S_S+I;T.

Taking the inverse Laplace transform of both sides of the equation, we obtain

LT tabie vz<r>=zl{§}<t>—zl{ ! }m.

s+ %
J ¥—RHP
Using Table 7.2 and the fact that the system is'causal (which implies the necessary ROC), we obtain

nverse LT

va(t) = u(t) — e FOu(r)

= (1—¢!/(RC) . LT [
(1= )ute ul) <> T for Rels) >0

- LT 1
e "’u(,e) ~— i {oc Rels) > -3
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Stabilization Example: Unstable Plant

B causal LTI plant:

P(S) — 10 ,—haspatedt 1

s—1
B ROC of P:
Im ROC s RHP
Sinte System 1S
Causal
System is not

BI8Q stabie
Since ROC Jdaes
nat contain
{maginary XIS

4“:_9‘6““
=
(¢

B system is not BIBO stable
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Stabilization Example: Using Pole-Zero Cancellation

B system formed by series interconnection of plant and causal LTI
compensator:

+
+

B system function H of overall system:

— _ s—1 10V _ 1 &« has pote 3t ~I
H(SbW(S)P(S);<1O(s+1)> (ﬁ)\; oy

Connecting sytiems

- s sSubstituie ml"t"P"
in series muitiplies .
B ROC of H: Syssem functions given Wand P
Im ROC is RHP since
‘ System 1S CouSa)

Since ROC contains

‘ Re  system ¢s BIBO stable
‘maginary 3K1S

B overall system is BIBO stable
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Stabilization Example: Using Feedback (1)

B feedback system (with causal LTI compensator and sensor):

AT e

Y

P(s)=1%, C(s)=B, 0O(s)=1

W system function H of feedback system: suesiitute given €, P, 20¢ @ 2nd simpiigy

H(S) _ C(s)P(s) /-:\3 108
U]-FC(S)P(S)Q(S) s—(1-10B) <— 426 oole
B ROC of H: we wirr show at 1-1ag
this shortly Im
i ROC is RHP since
% Re .
1108 ‘ Sysbern s Causal

B feedback system is BIBO stable if and only if 1 — 10B < 0 or equivalently
B> 1
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Stabilization Example: Using Feedback (2)

R R(s)CCs) R(5)C(s) PLS)
X { / Y
Cc P
l\!ts) Q(ls)
0

/ cquation for adder

® R(s)=X(s)—0(s)Y(s) |
@ Y(s) = C(s)P(s)R(s)+ ton for oot

 from®
substituting formusa

()P(s)[X(s) ___M"" .

(s)P(5)X (s) — C(s)P(s)Q(s)Y (5)* ™"*®

move ferms containing

[14+C(s)P(s)Q(s)]Y (s) = C(s)P(s)X (5)" Y fo the ieft-hond sice

dnd factor

RS

) divide both sides by
X s) 1+C(S)P(S)Q(s) %) [1+Ces) Pls) Q)]

YCs) = X(s) H(S)
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Stabilization Example: Using Feedback (3)

)
B (1)
10[3 multiply by i‘Tll
T s—1+10B
1OB > rewrite to explicitly Shew pole

s—(1=10B)
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Remarks on Stabilization Via Pole-Zero Cancellation

B Pole-zero cancellation is not achievable in practice, and therefore it cannot
be used to stabilize real-world systems.
B The theoretical models used to represent real-world systems are only
approximations due to many factors, including the following:
o Determining the system function of a system involves measurement, which
always has some error.
o A system cannot be built with such precision that it will have exactly some
prescribed system function.
o The system function of most systems will vary at least slightly with changes
in the physical environment.
o Although a LTI model is used to represent a system, the likely reality is that
the system is not exactly LTI, which introduces error.
B Due to approximation error, the effective poles and zeros of the system
function will only be approximately where they are expected to be.

B Since pole-zero cancellation requires that a pole and zero be placed at
exactly the same location, any error will prevent this cancellation from
being achieved.
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Example 7.40 (Stabilization of unstable plant). Consider the causal LTI system with input Laplace transform X,
output Laplace transform Y, and system function

as depicted inFigure 7.27. One can easily confirm that this system is not BIBO stable, due to the pole of P at 1. (Since
the system is causal, the ROC of P is the RHP given by Re(s) > 1. Clearly, this ROC does not include the imaginary
axis. Therefore, the system is not stable.) In what follows, we consider two different strategies for stabilizing this
unstable system as well as their suitability for use in practice.

X Y

| P L,

Figure 7.27: Plant.

(a) STABILIZATION OF UNSTABLE PLANT VIA POLE-ZERO CANCELLATION. Suppose that the system in Fig-
ure 7.27 is connected in series with another causal LTI system with system function

s—1

W(S):ma

in order to yield a new system with input Laplace transform X and output Laplace transform Y, as shown in Fig-
ure 7.28(a). Show that this new system is BIBO stable.

(b) STABILIZATION OF UNSTABLE PLANT VIA FEEDBACK. Suppose now that the system in Figure 7.27 is
interconnected with two other causal LTI systems with system functions C and Q, as shown in'Figure 7.28(b), in order
to yield a new system with input Laplace transform X, output Laplace transform Y, and system function H. Moreover,
suppose that

C(s)=B and OQ(s)=1,

where f3 is a real constant. Show that, with an appropriate choice of f3, the resulting system is BIBO stable.

XL PLS) X(s) PLs) w s
X ‘/ Y
— P > 1% —

@ Ris) C(s) R(s) C(s) P(s)

be
=

v &
~
h<

P > >

0 «
Yis)QLs) (b)

Figure 7.28: Two configurations for stabilizing the unstable plant. (a) Simple cascade system and (b) feedback control
system.

(c) PRACTICAL ISSUES. Parts (a) and (b) of this example consider two different schemes for stabilizing the
unstable system in Figure 7.27. As it turns out, a scheme like the one in part (a) is not useful in practice. Identify
the practical problems associated with this approach. Indicate whether the scheme in part (b) suffers from the same
shortcomings.
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Solution. (a) From the block diagram in Figure 7.28(a), the system function H of the overall system is

- H(s) =P(s)W
Y(s) = PLSYWI(S) Xts) _—> (s) (s)W(s) —:ﬁ Substitute given P and W

His) :<Sl_01><10(s+1)> : "
| e_/)s implify i Re.

s+l :

Since the system is causal and H is rational, the ROC of H is Re(s) > —1. Since the ROC includes the imaginary
axis, the system is BIBOstable.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the
system also has a somewhat reasonable step response. Recall that, for a control system, the output should track the
input. Since, in the case of the step response, the input is u, we would like the output to at least approximate u. The
step response s is given by

System
has s(t) =L~ H{U(9)H(s)} (1)
rtz»s«mabic1 1
Step =Lc! { (1)
cesponye S(S + 1)
1 1
=L -— t
{ s s+1 } ®)
=(1—e u(t).
. Evidently, s is a somewhat crude approximation of the desired response u.

(b) From the block diagram in Figure 7.28(b), we can write
—X(s)—Q(s)Y(s) and @)
Y(s) =C(s)P(s)R(s).

Combining these equations (by substituting the expression for R in the first equation into the second equation), we
obtain

R(s)

Y(s) = C(s)P(s)[X (s) — Q(s)Y (s)] Substituting @) int
= Y(s) = C(s)P(s)X(s) = C(s)P(s)Q(s)Y (5) redrrange ond facter
= [14+C(s)P(s)Q(s)]Y (s) = C(s)P(s)X (s)

L Ye) Py divide both Sides by
{1+ cisrPes) @] X¢s)

Since H(s) = igfg , we have

: H{s) = Y(S)
. coPs) Since ) X
1+C(s)P(s)Q(s)

Substituting the given expressions for P, C, and Q, we have

B
1+ B (1)
10ﬁ s;rnpl ")ty
s—1+10B
108 explititly Show poles

s—(1—10B)
L—v—_.l
pare

Substl'tu‘ung qiven B C, and &
H(s)=

ten
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The system function H is rational and has a single pole at 1 — 103. Since the system is'causal, the ROC must be the
RHP given by Re(s) > 1 — 10f. For the system to be stable, we require that the ROC includes the imaginary axis.
Thus, the system is stable if'1 — 108 < 0 which implies 10 > 1, or equivalently § > %.

Although our only objective in this example is to stabilize the unstable plant, we note that, as it turns out, the
system also has a reasonable step response. (This is not by chance, however. Some care had to be exercised in
the choice of the form of the compensator system function C. The process involved in making this choice requires
knowledge of control systems beyond the scope of this book, however.) Recall that, for a control system, the output
should track the input. Since, in the case of the step response, the input is u, we would like the output to at least
approximate u. The step response s is given by

~

system _
) () = £~ {U()H ()} (1)
ho3 108
VL (S
reasonoble {s(s—[l—lOB])}(t)
step e[ 108 (1 1 .
response - 10B—1\s s—(1—-10B)
_ 108 —(10B—1)t
_10/3—1(1 ¢ )"(t)
~u(t) forlarge f3.
L Clearly, as 3 increases, s better approximates the desired response u.

(c) The scheme in part (a) for stabilizing the unstable plant relies on pole-zero cancellation. Unfortunately, in
practice, it is not possible to achieve pole-zero cancellation. In short, the issue is one of approximation. Our analysis
of systems is based on theoretical models specified in terms of equations. These theoretical models, however, are only
approximations of real-world systems. This approximate nature is due to many factors, including (but not limited to)
the following:

1. We cannot determine the system function of a system exactly, since this involves measurement, which always
has some error.

2. We cannot build a system with such precision that it will have exactly some prescribed system function. The
system function will only be close to the desired one.

3. The system function of most systems will vary at least slightly with changes in the physical environment (e.g.,
changes in temperature and pressure, or changes in gravitational forces due to changes in the phase of the moon,
and so on).

4. Although a system may be represented by a LTI model, the likely reality is that the system is not exactly LTI,
which introduces error.

For reasons such as these, the effective poles and zeros of the system function will only be approximately where we
expect them to be. Pole-zero cancellation, however, requires a pole and zero to be placed at exactly the same location.
So, any error will prevent the pole-zero cancellation from occurring. Since at least some small error is unavoidable in
practice, the desired pole-zero cancellation will not be achieved.

The scheme in part (b) for stabilizing the unstable plant is based on feedback. With the feedback approach, the
poles of the system function are not cancelled with zeros. Instead, the poles are completely changed/relocated. For
this reason, we can place the poles such that, even if the poles are displaced slightly (due to approximation error),
the stability of the system will not be compromised. Therefore, this second scheme does not suffer from the same
practical problem that the first one does. u
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7.30 Consider the system JH{ with input Laplace transform X and output Laplace transform Y as shown in the figure.
In the figure, each subsystem is LTI and causal and labelled with its system function, and « is a real constant.
(a) Find the system function H of the system J{. (b) Determine whether the system 3 is BIBO stable.

X \4 Y

——® > > H——
— @

systematic approach to

obtaining system function: -3
= L
1) label system input and system ( S) V(S) % ( S) V(S)

output v /

2) label each adder output -3 < > a
3) write equation for each adder 1
-4 2
output and system output —_— VL 1 i ) —_—
' ' ' s? S) s 52 V(.S) / s V(,S)

4) combine equations to obtain /

Y
system function J‘ _a - s 2 .

Short Answer. (a) H(s) = i;rﬁ for Re(s) > —3; (b) system is BIBO stable.

Answer (a,b).

From the system block diagram, we have:

Y(s)=V(s)+(Z)V(s)+(22> v(s) and (D

The preceding two equations can be rearranged to yield
reéarrdnge @

@ Y(s):<1+:+s22>V(s) and

© w-(1+3t)r 8

Thus, H(s) is given by ﬁ divide @ by @
@ \::(5:))’" x\({s(,)s;‘ (s) = H(s) _S/Es;r i_—i-_a /;-—: 27s3}_ s> +as+2
8) = gres i X(s)  143/s+4/s%) 243544
X(s) )
GRS

\-/rea.-range

Solving for the poles of H(s), we obtain

=3+./9-4(1)(4)
2(1)

IS

—_341i
= zj:

"~ ‘

Since the poles have negative real parts, the system is BIBO stable.
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Example 7.42 (Unilateral Laplace transform of second-order derivative). Find the unilateral Laplace transform Y of
y in terms of the unilateral Laplace transform X of x, where

() =x"()
and the prime symbol denotes derivative (e.g., x” is the second derivative of x)

Solution. ‘Define the function
v(t) =x(1) (7.17)
so that

y(t) =V(t). (7.18)

Let V denote the unilateral Laplace transform of v. Taking the unilateral Laplace transform of (7.17) (using the
time-domain differentiation property), we have

V(s)=Lu{x'} (s) time-demain
= sX(s) —x(07). « differentistion (7.19)
property

Taking the unilateral Laplace transform of (7.18) (using the time-domain differentiation property), we have

Y(S) :LU {V/}(S) -(-n'me-*doma-‘n
=sV(s)—v(07). cdifferemntioticn (7.20)
Preperty
Substituting (7.19) into (7.20), we have

Vo) = () —2(07)] —v(or) & SOSEEING (219 ke (.20
= szX(s) —sx(O’) —x/(Of). D v=X" 3nd mu”n'ply

Thus, we have that

Y(s) = 52X (s) —sx(07) —x'(07). [
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Example 7.43. Consider the causal incrementally-linear TI system with input x and output y characterized by the
differential equation

Y'() 43y (1) +2y(t) = x(1),
where the prime symbol denotes derivative. If x(¢) = 5u(z), y(0~) =1, and y'(0~) = —1, find y.

Solution. We begin by taking the unilateral Laplace transform of both sides of the given differential equation. This
yields

£, (" +3Y +2y} (5) = Lux(s) linearity
= L.y} (s)+3L, {y} ) +2Luy(s) = Lux(s) P ke ULT
= [szY(s) —sy(07) =y (07)] +3 [s¥(s) —y(07)] +2Y (5) = X (s) .
. B o ") mulhply
= Y (s)—sy(07)—y'(07)+3sY(s) —3y(07 ) +2Y (s) = X (s)
5 - ) 4.—) move terms not containing Y to
= [s +3s+2] Y(s)=X(s)+sy(07)+y(07)+3y(0 ;‘Ohf-hlnd Side snd factor out
v(s) = X+ 5(07) +y'(07) +3y(0) g s
= Y(s)= 243542 ® : divide Dath sides by
s%43s42
Since x(t) = 5u(t), we have ke ULT of @) ULT toble

(©)
X(s) = Lo[5u(d)}(s) = 2. @

Substituting this expression for X and the given initial conditions into the above equation yields

(D) 4s—143  242+5 o subgstituting (®)

Yis)= s243s+2  s(s+1)(s+2) inte ©

Now, we mustfind a partial fraction expansion of Y. Such an expansion is of the form

Aq Ay Az

Y(s)= — .
(s) ) s+1 s+2

Calculating the expansion coefficients, we obtain
— £rom formula fer Simpie pole coge
sY (S ) ‘ s=0
s +25+5
(s+1)(s+2) |50

Ay

o dcom dormula for simple gofe
sEDY )y 7 Tesse s e

s> +2s5+5
s(s+2)
=—4, and 5
Ay = (DY (9], = e TormIe e Simpte pute
s> +2s5+5
s(s+1)

-3
-2
Ay = (

s=—1

s=—2

Il
NI

So, we can rewrite Y as

52 4 52
s s+1 s+2°

Y(s)=
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AR

recalj:
{ |
,  Yo=E(3)-4G0)£:3) /

taking inverse uLT

Taking the inverse unilateral Laplace transform of Y yields

N =L7v() S

y() u () 7 ”f\ﬂ?l‘f-}y
serd! (1) —4L;! L O+30," L (1)

270 s Yols+1 270 s+2

—4e™ +3¢ ¥ fort>0.

Il
Plw

froem ULT {obre

wLt uLT
[ - -3t
] &Y— S 5 e
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