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Distortion Related to Polarization-Mode 
Dispersion in Analog Lightwave Systems 

C. D. Poole and T. E. Darcie 

Abstract-Analog transmission in single-mode fiber using 
chirped sources gives rise to nonlinear distortion when polariza- 
tion-mode dispersion (PMD) is present. We investigate experi- 
mentally and theoretically two mechanisms for this distortion: 
for chirped sources, PMD in the presence of polarization-mode 
coupling results in second-order distortion that is proportional 
to the square of the modulation frequency; when polarization- 
dependent loss is present, an additional second-order distortion 
term occurs that is independent of modulation frequency. Both 
mechanisms give rise to distortion that is time varying due to 
the sensitivity of PMD to ambient temperature changes. Numeri- 
cal examples indicate that these effects can limit the capacity of 
analog systems that use directly modulated semiconductor lasers. 

I. INTRODUCTION 

H E  growing application and rapid advancement of T subcarrier modulation techniques in analog lightwave 
systems in recent years have focused attention on mecha- 
nisms that lead to nonlinear distortion in fiber transmis- 
sion [ll. Among the mechanisms that have been studied 
include fiber chromatic dispersion [2]-[4] and nonlinear 
optical effects such as self-phase modulation [4] and Bril- 
louin scattering [5]. 

In this paper we investigate mechanisms for nonlinear 
distortion in analog lightwave systems associated with 
polarization-mode dispersion (PMD). Polarization-mode 
dispersion arises in single-mode fiber when the combined 
effects of noncircularly symmetric internal stresses and 
waveguide geometry created during manufacture cause 
the two polarization modes of the waveguide to propagate 
with different group velocities [6]. In long fiber spans (e.g., 
> 1 km), the effect of this modal dispersion is complicated 
by internally and externally derived perturbations on the 
fiber birefringence that cause the two polarization modes 
to couple and interfere coherently. An important conse- 
quence of  this coupling is that the dispersion in a fiber 
becomes sensitive to changes in ambient temperature and 
mechanical perturbations [7], [SI. This sensitivity to the 
environment has been shown to lead to time-dependent 
fading effects in digital systems [8]. 

Here we identify two PMD-related mechanisms that 
lead to similar fading phenomena in analog systems. The 
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first mechanism arises from the interaction between PMD 
and laser chirp and requires that there be coupling be- 
tween polarization modes. The second mechanism arises 
from the interaction between PMD, laser chirp, and polar- 
ization-dependent loss (PDL). The former mechanism has 
been investigated previously using two different models to 
account for the effects of polarization-mode coupling [9], 
[lo]. This led to greatly differing predictions as to the 
magnitude of harmonic distortion caused by PMD be- 
cause the underlying assumptions were very different. In 
the present work we make minimal assumptions about the 
microscopic fiber properties by using a phenomenological 
description of PMD in which the fiber is described in 
terms of measurable input/output characteristics 171, [ill, 
[ 121. With this approach a surprisingly simple equation 
(Eq. (8)) is obtained for second-order distortion caused by 
PMD, the essential features of which are confirmed exper- 
imentally. 

11. THEORY 
The definitions of parameters used in this paper are 

given in Appendix A. 
We consider the simple case of a single-frequency laser 

source subjected to sinusoidal intensity modulation m(t)  
= rn, cos wmt. For frequencies of interest in CATV appli- 
cations, laser chirp can be modeled by assuming that the 
instantaneous optical frequency is directly proportional to 
the output power, w ( t )  = w ,  + yrn(t) ,  so that the optical 
field emerging from the laser is given by 

where O ( t )  = /yrn( t )  dt = (yrn,/w,) sin wmt is the 
time-dependent phase and C, is a complex unit vector 
specifying the polarization of the optical field. 

For small modulation indices (i.e., rn, << l), the optical 
spectrum, obtained by taking the Fourier transform of (1) 
[13], is given by 

m 

E J w )  = E ,  C A ,  6 [ w  - 0 0  - n w m l ,  (2) 
- m  

where 6[x] = 1 when x = 0 and is zero otherwise, and 
the coefficients A ,  are given by 
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In ( 3 )  1, are Bessel functions and j? = ym,/w,,, is the 
FM index corresponding to the laser chirp. 

We now consider transmission of the laser output 
through a fiber containing PMD and random 
polarization-mode coupling. In general, such a fiber can 

With the polarizer pass axis denoted by the unit vector 
ZP, the optical power detected by a square-law detector 
positioned after the partial polarizer is given by 

P,,,(t) = IEb(t)l2 - AT(1 - I $  .E t ( t )12) .  (6) 
be described by a 2 k 2-complex transmission (Jones) 
matrix in which each element of the matrix is a function 
of the source frequency [9], [lo]. The approach we take 
here is to model the temporal response of the fiber by 
expanding the transmission matrix of the fiber about the 
source center frequency. With this approach the optical 
field E,( t )  emerging from a fiber is related to the Fourier 
transform of the input field E,(w) by [71 

(4) E b ( t )  = c + E + ( t )  + c - E - ( t ) ,  

where E + ( t )  and E - ( t )  are given by 

and where we have neglected fiber loss. 
The expansion in (5) has been carried out to second 

order, where oo is the center frequency of the source, 
i,, and i,, are the input and output principal states of 
polarization-defined in [ l l ] ,  c = 2, . 2zk are the projec- 
tions of the input polarization onto the input principal 
states, I,!I( w )  is the polarization-independent component 
of the output field phase, 7 = d + / d o  is a polarization-in- 
dependent group-delay time, and AT is the differential 
group-delay time between the principal states. The two 
input (output) principal states represent the input (out- 
put) polarization states corresponding to the minimum 
and maximum group-delay times through the fiber. The 
second derivative of the phase I,!I" = d21,!I/do2 is the total 
chromatic dispersion of the fiber and can be expressed in 
terms of the conventional dispersion parameter D (ps/nm 
. km) and the fiber length L (km), I,!I" = -h2DL/2m.  
The primes in ( 5 )  indicate differentiation with respect to 
frequency and all parameters are evaluated at the source 
center frequency oo. 

To incorporate the effects of polarization-sensitive ele- 
ments in the system, such as polarization-dependent cou- 
plers, splices or receivers, we introduce polarization- 
dependent loss (PDL) in the form of a single partial 
polarizer placed at the fiber output. The partial polarizer 
has the property that light polarized along its pass axis 
sees unity power transmission Ti, = 1, while light polar- 
ized orthogonal to this axis sees a slightly reduced trans- 
mission T ,  = 1 - AT. We define AT to be the polariza- 
tion-dependent loss. 

By allowing CP to be complex, we can model any partial 
polarizer, even those whose pass axis corresponds to an 
elliptical polarization state. 

The R F  signal received by an ideal analog receiver is 
proportional to the power waveform Po,&). For the sin- 
gle-channel case considered here, the second-order non- 
linear distortion in the received R F  signal is given by the 
ratio of the R F  power contained in the second harmonic 
of the modulation (carrier) frequency to the RF power in 
the carrier 

where is the amplitude of the second-harmonic com- 
ponent of the optical power waveform in (6). 

The ratio v(2) is obtained analytically by inserting (2) 
into (5) while making use of (3) ,  (4), and (6) and the 
assumption of small distortions (Appendix B). The mathe- 
matics is cumbersome and the result, when represented 
with the parameters of (5), complicated. However, the 
result can be cast into a surprisingly simple and more 
meaningful form by representing both the dispersion and 
the state of polarization of the light using the PoincarC 
sphere representation [14]. The interested reader can 
refer to Appendix B for the derivation. Here we simply 
present the result 

In (8) ŝ  and @ are real, three-component unit vectors 
representing the output polarization and polarizer axis, 
respectively, M is the output polarization-dispersion vec- 
tor, and fl' = d f l / d w  is its frequency derivative. All 
parameters appearing in (8) are real and, as with the 
parameters in (9, are evaluated at the source center 
frequency wo. In obtaining (8) only the first nonzero terms 
in the frequency expansion have been retained. 

The polarization-dispersion vector fl is a compact way 
of representing PMD in a fiber [12], [15]-[18]. The direc- 
tion of M identifies the output principal state of polariza- 
tion on the PoincarC sphere corresponding to the mini- 
mum propagation delay time through the fiber. The 
magnitude of M is equal to the differential group-delay 
time between the fast and slow principal states, i.e., IMl = 

A T .  Under static conditions, PMD in a fiber is completely 
characterized by the vector M and its frequency depen- 
dence. When the source spectrum is narrow and the 
effects of PMD are small, as assumed here, it is sufficient 
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to know and its derivative. In the language of the 
frequency expansion of (5),  0 evaluated at the source 
center frequency wo represents the first-order effect of 
PMD, while its derivative a’ represents a second-order 
effect. 

The first bracketed term inside the curly braces in (8) is 
the second-harmonic distortion arising from the interac- 
tion of fiber dispersion and laser chirp. It contains the 
contribution from chromatic dispersion ( I,V’ term) and 
from PMD (the vector dot product). The second brack- 
eted term is the distortion arising from the interaction of 
PMD, laser-chirp, and polarization-dependent loss. 

The origin of the second-harmonic distortion terms in 
(8) can be understood qualitatively as arising from the 
beating of the carrier with low-level amplitude-modulated 
signals that are created by frequency-to-amplitude modu- 
lation conversion in the system. In the case of the pure 
dispersion terms in (S), the frequency modulation of the 
laser is converted to amplitude modulation by the fre- 
quency-dependent group-delay time (i.e., dispersion) in 
the fiber, which causes the optical power to be redis- 
tributed in time at the fiber output. In the case of the 
polarization-dependent loss mechanism, the frequency 
modulation is first converted to polarization modulation 
by the PMD of the fiber. This polarization modulation is 
then converted to amplitude modulation when the signal 
light passes through an element whose loss (or transmis- 
sion) is polarization-dependent. 

Several important conclusions can be drawn from (8). 
First, the equation shows that in the absence of polariza- 
tion-dependent loss (i.e., AT = 01, PMD-induced distor- 
tion arises from the frequency dependence of the disper- 
sion vector, represented here by its derivative 0’. There is 
no term involving itself. This is because a differential 
group-delay time AT = In( between orthogonal compo- 
nents of the optical field does not in itself give rise to 
distortion. Furthermore, since the frequency dependence 
of the dispersion vector becomes large only when there is 
significant polarization-mode coupling, it can be inferred 
that polarization-mode coupling is necessary for PMD-in- 
duced distortion, a conclusion that has been arrived at 
elsewhere [9], [lo]. Thus, for example, we would expect 
little distortion when transmitting through a polarization- 
maintaining fiber, regardless of the launch polarization or 
level of PMD. 

A second point to note is that the pure dispersion terms 
scale with the modulation frequency squared, while the 
polarization-dependent loss term is independent of modu- 
lation frequency. Therefore, high-frequency channels are 
more likely to be affected by the pure dispersion mecha- 
nism, while low-frequency channels are more likely to be 
affected by the polarization-dependent loss mechanism. 

A third point to note is that there are special conditions 
in which each of the PMD distortion terms are identically 
zero, regardless of the amount of PMD. For example, the 
pure PMD distortion term goes to zero when the output 
polarization is orthogonal to the derivative of the disper- 
sion vector (i.e., when s^.  Ln’ = 0). The polarization-de- 

pendent loss term, on the other hand, will be zero when 
the polarization is parallel to the dispersion vector (i.e., 
when 0 X ŝ  = 0) or when this cross product is orthogonal 
to the polarizer axis (i.e., i3 * (0 X SI) = 0). In general, 
there is no single polarization state that will eliminate 
both terms at the same time. However, when one term 
can be neglected, for example, when there is negligible 
polarization-dependent loss, adjustment of the launch po- 
larization can be used to eliminate the distortion. 

In general, PMD-related distortion is determined by 
the relative angles of the vectors in (S), as well as the 
magnitudes of and W. Since these parameters depend 
on the details of the birefringence along the fiber path 
and since this birefringence is random, the distortion 
cannot be known a priori. Furthermore, the distortion will 
vary randomly in a single fiber through variations in 
ambient temperature and changes in the perturbations 
acting on the fiber. 

To quantify the magnitude of the affect under these 
conditions, it is useful to consider the ensemble average 
distortion that would arise among a population of statisti- 
cally equivalent fibers. This average is obtained by taking 
the average of (8), assuming a uniform distribution of the 
polarization vector ŝ  over the PoincarC sphere, and is 
given by 

(9) 
72 

+ 

In obtaining (9) we have made use of the relations 
(cos’ 6 )  = 1/3 and (sin2 6 )  = 2/3, where 8 is the angle 
between 3-dimensional vectors. Under reasonable as- 
sumptions it is expected that (9) can be generalized to also 
represent the average obtained in a single fiber subjected 
to varying ambient temperature [SI, [191. 

Equation (9) can be simplified further by assuming that 
the fiber is long compared to the characteristic coupling 
length of the modes, L x=- 1,. For spans many kilometers 
long this is likely to be a good approximation since the 
longest reported coupling lengths have been less than a 
kilometer [20]. Using this assumption the average magni- 
tude of the dispersion vector R is simply related to the 
average magnitude of its derivative R’ by [161 

Making use of the relation  AT^) = (~T/S)(AT)’ corre- 
sponding to a Maxwell distribution for AT at long lengths 
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[12l, [161, [21l, (9) takes the form 

T AT’ ( AT ) 2  + 
192 

7r ’m i (  AT )4 
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256 

.) (single channel >> 1). 

(11) 

A. Multiple- Channel Case 
So far we have considered the case of a single-channel 

system. In multiple-channel systems many carriers are 
transmitted simultaneously. The resulting nonlinear dis- 
tortion arises through mixing of the carriers to create sum 
and difference frequency components corresponding to 
the various permutations of the channel frequencies. This 
is manifested in the RF frequency spectrum by a collec- 
tion of distortion peaks that fall near the carrier peaks. 
The RF power in the largest of the peaks falling near a 
given carrier is used as a measure of the composite 
second-order (CSO) distortion for that channel. Because 
the channels are typically spaced in a regular pattern, 
many sum and difference frequency signals fall at the 
same place in the R F  spectrum. As a result most CSO 
peaks consist of more than one signal. 

To generalize the single-channel result given in (11) to 
the multichannel case, a parameter N (referred to as the 
product count) is introduced to represent the number of 
channel pairs contributing to a given CSO peak. This 
number, which depends on the particular channel and the 
frequency allocation in a given system, can be calculated 
once the channel frequencies are known. 

In addition to the product count, the multichannel 
system differs from the single-channel case because most 
of the CSO peaks are produced by the mixing of two 
different channels. This nondegenerate mixing produces 
second-order distortion that is a factor of 4 larger in R F  
power than the second-harmonic distortion of a single 
channel (see Appendix C). Using this factor of 4 together 
with the product count N and (10, we obtain the CSO in 
a multichannel system 

7r2wj ( AT )4 

256 

7 r A T 2 ( A T ) 2  48 1 + 
.(multiple channel, L/1, x=- 1). (12) 

where 6+ is now the R F  frequency at which the distortion 
is observed. Note that in the single-channel case (111, 

111. EXPERIMENT 
Figure 1 shows the experimental multichannel CATV 

system used to investigate the nonlinear distortion de- 
scribed by (12). A CW carrier source was used to drive a 

wd = 20,. 

Oven 
r - - - - 1  

: = E r  f receiver 
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Spectrum 
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Laser lrotary Beam I Filter 
Transmitter splice Expander 

Fig. 1. Experimental CATV system. CWC is 60-channel CW carrier 
source. 

1.3-pm DFB laser with 60 simultaneous AM channels. 
The output of the transmitter was sent through the test 
fibers which were temperature tuned so that the sensitiv- 
ity of the distortion to fiber temperature changes could be 
investigated. This was typically accomplished by placing 
the test fiber in an oven. At the output of the test fiber, a 
fiber-optic beam expander was placed in the optical path 
so that a pellicle could be inserted into the beam. The 
pellicle was used to introduce variable polarization-depen- 
dent loss by adjusting the angle of incidence of the light 
falling onto the pellicle surface. After the beam expander, 
the optical signal was detected by a pin receiver and the 
composite second-order distortion (CSO) determined by 
measuring the appropriate peak heights on an R F  spec- 
trum analyzer. 

The PMD of each test fiber was characterized by its 
expected value ( A T ) .  These values were obtained by a 
broadband measurement technique employing an LED 
source and fixed analyzer [22]. Measurements were made 
under static temperature conditions and the average PMD 
that was obtained corresponded to an average over wave- 
length. 

In order to isolate PMD-related distortions from other 
distortions in our system, a DFB laser with unusually high 
chirp (ymo/27r = 700 MHz) and fibers with unusually 
high PMD were used in the experiment. Because of the 
operating wavelength in the experiment and the relatively 
short fiber lengths used (< 16 km), no effects due to 
chromatic dispersion were observed. 

A. Pure PMD Mechanism 
Initial measurements were made without polarization- 

dependent loss in the system. Figure 2 shows the variation 
of the nonlinear distortion caused by the sensitivity of the 
PMD to temperature. The figure shows the CSO mea- 
sured through 26 ps of PMD over a 14-min period during 
which the temperature in the oven was being ramped 
upward from approximately 25 to 50°C. Swings in the CSO 
through the test fiber approach 20 dB. The CSO mea- 
sured through a short fiber jumper, shown as the baseline 
in Fig. 2, shows negligible variation. Measurements made 
through a short length of polarization-maintaining (PM) 
fiber with total PMD of about 30 ps showed no measur- 
able distortion. The lack of distortion we attribute to the 
lack of polarization-mode coupling in the PM fiber as 
already discussed. All of the test fibers (other than the 
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PM fiber) showed behavior qualitatively the same as that 
shown in Fig. 2. 

In agreement with (81, the distortion could always be 
eliminated by adjustment of the polarization using a po- 
larization controller at the input end of the test fiber. 
However, to maintain zero distortion, the controller had 
to be continuously adjusted in order to track changes in 
the fiber. 

Swings in the composite third-order distortion, or com- 
posite triple beat (CTB), were also observed. The maxi- 
mum levels of CTB were at least 20 dB less than the 
average CSO levels, even with the unusually high laser 
chirp and fiber PMD used in the measurements. Typically, 
the CTB was below the noise floor of the measurement. 
We do not anticipate that CTB variations will be measur- 
able for typical component values. 

To compare theory to experiment, the average compos- 
ite second-order (CSO) distortion was measured by taking 
a time average of CSO data similar to that shown in Fig. 
2. Typically 30-min data scans were used during which 
time the ambient temperature of the fiber was being 
ramped from 25 to 50°C. 

Figure 3 shows the average CSO measured as a func- 
tion of PMD without polarization-dependent loss. The 
PMD was varied by using different combinations of test 
fibers. Data for four different AM channels are shown. 
The estimated error in the PMD values is indicated by the 
error bar on the bottommost data point. The data clearly 
indicate a strong dependence on the PMD. The ordering 
of the channels for a given PMD value is indicative of a 
strong modulation-frequency dependence in agreement 
with (12). The two lowest channel 60 data points (trian- 
gles) were obtained using a linearization circuit on the 
transmitter to cancel the inherent transmitter distortion 
and allow measurements at these low distortion values 
U31. 

The curves shown in Fig. 3 were generated using the 
second term in (12) together with independently mea- 
sured modulation parameters y and m, and the known 
composite product counts. The figure shows reasonable 
agreement between the experimental data points and the 
theoretical curves. 

B. Polarization-Dependent Loss Mechanism 
Distortion caused by the presence of polarization-de- 

pendent loss was investigated by inserting the pellicle into 
the beam expander. Since, according to (12), low PMD 
and low modulation frequency favor the polarization-de- 
pendent loss mechanism over the pure PMD mechanism, 
polarization-dependent loss effects were isolated by using 
one of the lower PMD fibers and a low-frequency channel 
(channel 3, 61.25 MHz) so that polarization-dependent 
loss would be the dominant mechanism. 

Figure 4 shows the average CSO as a function of the 
polarization-dependent loss AT, introduced by positioning 
the pellicle at different angles with respect to the beam. 
The polarization-dependent loss was measured directly by 
adjusting the polarization incident on the pellicle using a 
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Fig. 2. Time-dependent fluctuation of the CSO caused by varying the 
fiber temperature. 
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Fig. 3. Average CSO versus PMD = ( A T )  (without polarization-depen- 
dent loss) for four different channels. Curves correspond to theory. 
Laser chirp, yrno/2n- = 700 MHz. Channel frequencies are f3 = 61.25 
MHz, f i 2  = 205.25 MHz, f4n = 319.25 MHz, f6,, = 433.25 MHz. Product 
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polarization controller to find the minimum and maximum 
transmission. As in Fig. 3, each data point in Fig. 4 is an 
average taken over a 30-min time span while the oven 
temperature was being cycled. The theoretical curve shown 
in the figure was generated from the third term in (12). 

IV. DISCUSSION 
The importance of the mechanisms described here for 

practical analog systems is illustrated in Fig. 5. The figure 
shows the system parameter requirements for a standard 
U.S. 60-channel CATV system to operate with an average 
composite second-order distortion of - 70 dBc. The aver- 
age CSO value of - 70 dBc was chosen to provide a safety 
margin for fluctuations in the CSO before a distortion 
level of - 55 dBc is reached. Above this level of distortion 
noticeable degradation of the video picture can occur. 
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The two most important parameters, fiber PMD and laser 
chirp, are indicated on the vertical and horizontal axes, 
respectively. The four curves shown in the figure corre- 
spond to different levels of polarization-dependent loss. 
Each curve was generated using (12) assuming a modula- 
tion frequency of 433.25 MHz, corresponding to the high- 
est frequency channel in a standard 60-channel system. 
Also shown in the figure is the typical range for laser 
chirp. 

Figure 5 shows that a 60-channel system should have an 
average span PMD below about 7 ps in the absence of 
polarization-dependent loss and below about 4 ps with 2% 
polarization-dependent loss. 

Although Fig. 5 shows that polarization-dependent loss 
as low as 2% can have a significant effect on the PMD 
requirements for analog systems, it has been assumed that 
the polarization-sensitive element is located at the output 
end of the fiber span, which is the worst-case situation. 
Polarization-sensitive elements at the input end will not 
cause distortion, and elements distributed along the length 
of a span will have less effect than if positioned at the 
end. However, our use of a single partial polarizer located 
at the output of the fiber is directly relevant to the use of 
optical couplers at the output end of systems for power- 
splitting or WDM applications. Such couplers often have 
polarization-dependent transmission of the order of 10%. 
Stringent requirements on the polarization dependence of 
such couplers and/or fiber PMD will be required to avoid 
significant distortion. 

Finally, it should be noted that while our central result, 
(8), indicates that there is no distortion when the source 
chirp is zero, this is true only to within the accuracy of the 
frequency expansions that were used to obtain the two 
terms in (8). Since the terms in (8) represent a very small 
effect, it is expected that the next higher-order terms in 
the expansions will be far smaller. Thus, the use of chirp- 
free sources, for example, those using external modula- 
tors, should greatly reduce the effects described here. 

V. CONCLUSION 
We have investigated experimentally and theoretically 

two mechanisms for nonlinear distortion in analog light- 
wave systems associated with PMD. The first mechanism 
requires polarization-mode coupling and laser chirp and 
creates a distortion (measured in RF power) that scales as 
the fourth power of PMD and as the square of both the 
modulation frequency and the laser chirp. The second 
mechanism results from an interaction between PMD and 
polarization-dependent loss and creates a distortion that 
scales as the square of the PMD, the laser chirp, and the 
polarization-dependent loss but is independent of modu- 
lation frequency. Both mechanisms require laser chirp 
and create distortion that is sensitive to changes in fiber 
temperature and mechanical perturbations. 

APPENDIX A 

Parameter Definitions 

w,,, Modulation frequency (radian) of laser output 
wd Distortion frequency (radian) 
m, Amplitude of sinusoidal intensity modulation 

emerging from laser 
w Optical frequency (radian) of laser output 
w,, Optical frequency of unmodulated laser output 
Y Chirp parameter that relates change in laser 

output frequency to change in laser output power 
P FM index corresponding to induced laser chirp, 

P = Ymo/%l 
E, Electric field amplitude of unmodulated laser 

output 
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Electric field amplitudes of optical signal at in- 
put (E,) and output (E,) of fiber 
Bessel function coefficients 
Dirac delta function 
Bessel function 
Complex unit vectors specifying input principal 
states of polarization 
Complex unit vectors specifying output principal 
states of polarization 
Difference in arrival time for waves launched 
with polarizations aligned with the two input 
principal states of polarization 
Fiber length 
Length-normalized chromatic dispersion typi- 
cally represented in the units ps/nm . km 
Total chromatic dispersion of fiber, +" = 

Polarization-dependent loss defined as the dif- 
ference between maximum and minimum trans- 
mission, AT I 1 
Complex unit vector specifying pass axis of gen- 
eral partial polarizer 
Amplitude of the second-harmonic component 
of output optical power waveform 
Ratio of RF power at second harmonic to RF 
power at carrier frequency 
Three-dimensional polarization-dispersion vec- 
tor (PoincarC sphere representation), where I i l l  
= Ar 
Real unit vector (PoincarC sphere representa- 
tion) specifying polarization of unmodulated op- 
tical signal at fiber output 
Real unit vector (PoincarC sphere representa- 
tion) specifying pass axis of general partial polar- 
izer 
Coupling length corresponding to distance over 
which power is coupled between polarization 
modes 
Product count, equal to the number of mixing 
products contributing to a distortion peak in the 
RF spectrum of a multichannel system 
Average composite second-order distortion 
Unit of RF power, equal to 10* log of the ratio 
of the RF power to the RF power in the carrier 

- h2DL/2r  

APPENDIX B 
In this appendix we derive the second-harmonic signal 

((8) of the text) created by transmitting a single-channel 
analog signal through a fiber containing PMD, chromatic 
dispersion, and polarization-dependent loss. The contribu- 
tion from dispersion alone and the contribution from 
polarization-dependent loss are treated separately. 

Pure Dispersion Mechanism 
Here we derive the first bracketed term in (8). This 

term is due to fiber chromatic and polarization-mode 
dispersion interacting with laser chirp. 

We assume that the optical spectrum of the source is 
sufficiently narrow that the exponential in ( 5 )  can be 
expanded, so that the equation takes the form 

(+" f &'/2) 
2 
i Ar 

+i 

'1 + Z b T e i Q + - [ Z i + . Z z T ] ( w  - 0,) . (Bl) 

Putting (Bl) into (4) of the text and squaring gives the 
time-dependent optical power emerging from the fiber 

2 -  - 

po,,(t) = Eb(t) ' E , * ( t )  

E,( W)E,*(o')ei("-"'X'-')d w dw' 

Ar  ' 
8 

- - ( U  - w Y  

1 Art 
4 

+ (Ic+12 - lc-12)- + A r a  

where a = Re[c+c'l_(Zi+. ; ,*->I,  lc+I2 + lc-I2 = 1, and 
where terms to second order have been retained. 

Substituting (2) for Ea(w)  in (B2) and integrating gives 

~ ~ , , ( t )  = E: C C AnAmei(npm)om(t-T)  
m m  

m =  - -m f i =  - -m 

x 1 + -(lc+lz - lc-I2) Ar(n  - m ) w ,  { ;  
A r  ' 
8 

- -(n - m ) 2 w i  

1 Art 
4 + (Ic+lz - 1 ~ 1 ~ ) -  + A r a  

- ( n 2  - m 2 ) w i  . 033) 

With the change of indices k = n - m and grouping 
terms of like frequency, (B3) can be written as 

1 

- [ -(lc+I2 k: - IC-1') Arw, 
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where conventional units 
*’I  A r t  
2 4 

G = - + (Ic+12 - lc-12)- + A r a  

and the coefficients Bk and ck are 
m 

B k =  A n A n - k ,  
n =  - m  

m (€35) 
Ck = c nA,,A,-,. 

The values of B, and ck are obtained by inserting (3) of 
the text into (B5) and using the Bessel function identities 

n =  - m  

~241 
m 

J n + [ ( x ) J n + j ( x )  = 6 [ 1  - j l ,  

d n + l ( x ) J n + j ( x )  = -16El -j l  + - [ 6 [ 1  - j  + 11 
n =  --3o 2 

+ 6 [ 1  - j - 111. 

n =  - -cc  

m 
X 

036) 
To first order in the modulation index m,, the coefficients 
Bk and ck are given by 

Bo = 1, 

B, = 0 for Ikl > 1, 

mn B 

where D is the dispersion (typically in ps/nm km), L is 
the fiber length, and c is the speed of light. 

The last two terms in (B8) are due to the fiber PMD. 
We now show that these two terms have a simple geomet- 
rical interpretation. To do this, we use the PoincarC 
sphere representation of polarization in which any polar- 
ization state can be represented by a real, three-compo- 
nent unit vector ŝ  = (s,, s 2 ,  s3) [14]. The three compo- 
nents of the unit vector are related to the x-directed and 
y-directed complex components of the E field by 

lE,12 - IEy12 

lE,12 + IEy12 ’ 
SI = 

2 Re[ E,E,* ] 
s2 = 

l J q 2  + lEyl2 ’ 

E,l2 + lEy12. 

2 Im[ E,E,* ] 
s3 = 

Using this representation, it can be shown by direct 
substitution that the parameter a = Re[c+c*(2;+. ;,*->I 
can be expressed as 

1 dPa- 
a =  - - s  - -  4 in d w  ’ 

CO = - 
2 ’  where iin and Fa+ are unit vectors representing the input 

polarization and t h e  input principal states, respectively. 
Recalling that c = 

(B7) 
* 2:&, it can also be shown that 

c =-+A P m  
2 4 ’  

m0 P c, = c-2 = - 
4 ’  

C ,  = 0 for Ikl > 2. 

We are interested in the component of Po&) at the 
second harmonic of the modulation frequency. This is 
given by the k = + 2  terms in (B4). Using the coefficient 
values given in (B7), the second-harmonic component of 
the output power is 

1 Art  
4 e[: + (Ic+12 - lc-12)- + A r a  

*sin2wm(t - r ) ,  038) 

where we have made the substitution P = y m , / w m .  
The first term within the brackets corresponds to the 

second-harmonic distortion caused by chromatic disper- 
sion. This result agrees with a previous result obtained by 
a perturbation analysis on the wave equation [41. The 
second derivative of the phase can be expressed in the 

(lc+12 - IC-I 2 . .  ) =sin *Fa+= -s^. . P  
A a - ,  0312) 

so that the two PMD terms in (B8) become 

) .  (B13) 

It is useful to translate the vectors in (B13) to the 
output of the fiber. This can be done by invoking a 3 X 3 
unitary matrix M to describe the polarization properties 
of the fiber so that 

= Mŝ in, 

(B14) 
dpb- dM A dPa- dPa_ 
d w  d o  d w  d w  

-Pa-+ M- = M-, -=  

where ioUt and Pb+ are the output polarization and 
principal states in the PoincarC sphere representation, 
respectively, and where the last equation makes use of 
the defi@ng property of the principal states to set 
d M / d w  Pa-= 0 [ll]. 
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Because of the unitary nature of M ,  the angles between 

(B15) 

so that, using (B14) and (B15), (B13) can be written in 
terms of the output vectors 

orthogonal (in the electric field) to the polarizer axis, then 
f i  s  ̂ = - 1 and T = 1 - AT. 

When light is transmitted through a fiber containing 
PMD, the polarization at the output is frequency depen- 
dent. This effect is the frequency-domain manifestation of 
PMD and is expressed by the equation 

vectors are preserved upon transmission [25], i.e., 

M x - M y  = x . y ,  

d i  
- =  a x i ,  (B19) 
d w  

where tl is the output dispersion vector [15]-[18]. When 
light is passed through a partial polarizer, the frequency 
dependence of the polarization is converted to a fre- 

- l A  d quency-dependent transmission. For small excursions in 
- - 4sOut - - ( Ar j b - )  the polarization, this frequency-dependent transmission is 

obtained by expanding in frequency (B18) 
dT 
d o  

d w  

(€316) 

where a = d l l / d w  = d / d w ( A r  ib-) is the derivative of 
the output dispersion vector [18]. 

IA  - - -  
4sout  * a, - 

T (  0) = To + -( w - w 0 )  + * * e .  (B20) 

Using (B18) and (B19), this expansion can be written in 
terms of the dispersion vector 0: Equation (B8) can now be written as 

( 2 ) ( t )  = -E$ymiw,  PO" t 

-sin2w,(t - r ) .  (B17) We next consider the intensity-modulated signal de- 

Thus, the PMD-related distortion terms are proportional 
to the dot product of the output polarization vector and 
the frequency derivative of the output polarization-disper- 
sion vector. 

Polarization-Dependent Loss Mechanism 
Here we derive the second-harmonic distortion caused 

by the interaction of PMD, laser chirp, and polarization- 
dependent loss. This term appears as the last term in (8) 
of the text and can be derived in a manner analogous to 
the derivation given in the previous section for the pure 
PMD terms by using the temporal response function given 
in (5)  together with the second term in (6). However, this 

scribed by (1) of the text. Owing to chirp, the optical 
frequency is modulated along with the intensity, so that, 
after passing through a fiber with PMD, both the intensity 
and the polarization will be time varying. To first order, 
the time-dependent power transmitted through a partial 
polarizer positioned at the fiber output becomes, accord- 
ing to (B21), 

Po,,(t) = Pin(t - r ) T ( w ( t  - 7)) 

= E i ( 1  + m ( t  - 7)) 
AT 

effect is most easily derived by a PoincarC sphere analysis, 
which has the added benefit of being more intuitive. This 
is the approach given here. 

We start by considering the optical power transmitted 

where Pi$) = Ei(1 + m(t)).  

and m ( t )  = rn, cos w,t, (B22) becomes 
Making the substitutions w ( t )  = wo + y m ,  cos w,t 

through a general partial- polarizer located at the output ATymi  
of a fiber. We let the polarizer be described by an arbi- poUt(t )  = J% To + - [$ * (a x a1 
trary unit vector fi (PoincarC sphere representation) and i 4  

( 2  1 ATY + To + - [$ . (Cn X i l l  m ,  cos w,(t - r 
differential transmission AT. Light having a state of po- 
larization aligned with the polarizer axis sees unity trans- 
mission, while light polarized orthogonal to the axis sees a 

[ $ . ( a ~ P ) ] c o s 2 w , ( t -  r )  . 

0323) 

The second-harmonic component of the output power 

1 ATymi  +- 
4 

reduced transmission T = 1 - AT. More generally, for an 
arbitrary incident polarization $, the transmission through 
the partial polarizer is given by 

(B18) 
2 waveform is therefore 

Note that orthogonal polarizations are represented on the 
PoincarC sphere by oppositely directed vectors. Thus, when 
the incident polarization is matched to the polarizer, 
6 . $ = 1 and T = 1. When the incident polarization is 

AT 
T =  1 - -[1 - a * $ ] .  

E: AT y m i  
4 

[$.(a ~ i ) l c o s 2 w , ( t  - 7). PAij(t) = 

(€324) 
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Making use of (B17) and (B24) and (7) of the text, the 
total second-harmonic distortion caused by fiber disper- 
sion and polarization-dependent loss becomes 

APPENDIX C 
In this appendix we derive the factor of 4 that was used 

to obtain (12) of the text from the single-channel result 
(11). This factor reflects the larger distortion that arises 
from nondegenerate mixing of carriers. 

We consider a multichannel analog system consisting of 
M CW carrier channels modulating a single semiconduc- 
tor laser at channel frequencies U,, where j = 
1,2,3;.-, M. The time-varying component of the laser 
output power obtained by squaring (1) is given by 

M 
P ( t )  = Eim,  cos w,t. (C1) 

1 = 1  

Second-order nonlinear distortion arises in an analog 
system when the carriers in (Cl) beat against a second 
signal with identical frequency content created by nonlin- 
ear mechanisms in the system. For the distortion mecha- 
nisms considered here, this second signal arises from 
frequency-to-amplitude modulation conversion caused by 
fiber dispersion and polarization-dependent loss. We rep- 
resent this signal by 

M M 

HYt) = cos w,t + e2 w, sin wit, (C2) 

where typically el, e2 << m,. The first term in (C2) corre- 
sponds to amplitude modulation created when a fre- 
quency-modulated signal passes through a fiber contain- 
ing PMD and then through a polarization-dependent loss 
element (see Appendix B). The second term in (C2) 
corresponds to amplitude modulation created when a 
frequency-modulated signal passes through a dispersive 
fiber. This latter term can be obtained directly from (B4), 
by setting the modulation index m,  to zero, while main- 
taining a finite chirp index p. 

Second-order distortion comes from the beating of the 
signals in (C1) and (C2). The amplitude of this beat signal 
is proportional to the product of (Cl) and (C2): 

J = 1  

Pbeat(t) = A  W ( t )  . P ( t >  
M M  

= A ,  COS w,t cos w,t 
1 = 1  k = l  

M M  
+ A 2  w, sin w,t cos wJt. (C3) 

Using well-known trigonometric identities, (C3) can be 

j = l  k = l  

+ sin( wj - U,)]  . (C4) 

The beat signals in (C4) consist of degenerate ( j  = k )  
and nondegenerate ( j  # k )  mixing products. The degener- 
ate mixing products are at the second harmonics of the 
carriers and are generated by the beating of the carriers 
against themselves. The nondegenerate products are at 
sum and difference frequencies of the carriers and are 
generated by the beating of two different carriers. We 
write these two groups of terms separately 

AIM A ,  
Degenerate terms = - + - cos2wjt 

2 2 j = 1  

A2 
2 j = 1  

+- wjsin2wjt, 

Nondegenerate terms 
M M  

= A l  c   COS(^^ + wk)t 
j = k + l  k = l  

+ C 0 S b j  - Wk)t] (C5) 

' j = k + l k = l  

+ ( w j  - w,)sin(w, - wj)t. 

In the last equation the range of summation for the j 
index was changed to group terms of the same frequency. 

Using (C5), we compare the RF power in a nondegener- 
ate mixing product to the RF power in a degenerate 
mixing product at the same frequency. Thus, considering 
the sum-frequency terms, we set wj + w, = 2wj. The 
ratio of RF powers is 

[AT + q ( 2 w j )  A; 

- - 
RF power sum frequency 

RF power degenerate AT Ai + - (2 - 
4 ' 4 --J 

A similar result can be obtained for the difference- 
frequency terms. 

Since the vast majority of the distortion products in a 
multichannel system are nondegenerate products, we con- 
clude from (C6) that the second-order distortion products 
in a multichannel system are a factor of 4 larger than the 
second-harmonic distortion products in a single channel 
transmitted through the same medium. 
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