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Abstract—In this paper, we focus on the least-squares (LS)
formulation for the localization problem, where the l2-norm of
the residual errors is minimized in a setting known as difference-
of-convex-functions programming. The problem at hand is then
solved by applying a penalty convex-concave procedure (PCCP)
in a successive manner. Algorithmic details that are tailored to
the localization problem, such as imposing additional constraints
to enforce iteration path towards the LS solution and strategies to
secure a good initial point, are also provided. Simulation results
demonstrate promising localization performance when compared
with some best known results from the literature.

Index Terms—least squares; non-convex; convex-concave pro-
cedure; CCP; source localization; range measurements.

I. INTRODUCTION

Locating a radiating source from range measurements in
a passive sensor network has recently attracted an increasing
amount of research interest as it finds applications in a wide
range of network-based wireless systems. Least squares (LS)
based algorithms for source localization problems constitute
an important class of solution techniques as they are geomet-
rically meaningful and often provide low complexity solution
procedures with competitive estimation accuracy [1]-[7]. On
the other hand, the error measure in an LS formulation for
the localization problem of interest is shown to be highly
non-convex, possessing multiple local solutions with degraded
performance. This non-convexity excludes many local methods
that are iterative, hence extremely sensitive to where the
iteration begins. Several non-iterative global localization tech-
niques are available from the literature. A global solution may
be obtained by relaxing the LS model at hand to a semidefinite
programming (SDP) problem which is known to be convex
[10]. In doing so, however, the convexification based solution
is no longer optimal in LS sense. Another representative in
this class is the method proposed in [7], where localization
problems for range measurements are addressed by developing
solution methods for squared range LS (SR-LS) problems.
Although these methods are efficient in terms of complexity,
they remain to be suboptimal in the maximum likelihood (ML)
sense because the solutions produced are merely approxima-
tions of the ML estimate.

In this paper, we focus on LS formulation for the problem
of localizing a single radiating source based on range mea-
surements. We exploit special structure of the cost function
of an unconstrained LS formulation and show that it is well

suited for being investigated in a setting known as difference-
of-convex-functions (DC) programming. Further, we present
an algorithm for solving the LS problem at hand based on
a penalty convex-concave procedure (PCCP) [9] that accom-
modates infeasible initial points. We also provide algorithmic
details that are tailored to the localization problem at hand,
these include additional constraints that enforce the algorithms
iteration path towards the LS solution and strategies to secure
good initial points for the algorithm. Numerical results are
presented to demonstrate that the proposed algorithm offers
substantial performance improvement relative to some best
known results from the literature.

II. PROBLEM STATEMENT AND REVIEW OF RELATED
WORK

The source localization problem considered here involves
a given array of m sensors specified by {a1, . . . ,am} where
ai ∈ Rn contains n coordinates of the ith sensor in space
Rn. Each sensor measures its distance to a radiating source
x ∈ Rn. Throughout it is assumed that only noisy copies of
the distance data are available, hence the range measurements
obey the model

ri = ‖x− ai‖+ εi, i = 1, . . . ,m. (1)

where εi denotes the unknown noise that has occurred when
the ith sensor measures its distance to source x. Let r =
[r1 r2 . . . rm]T and ε = [ε1 ε2 . . . εm]T , the source localization
problem can be stated as to estimate the exact source location
x from the noisy range measurements r. For the localization
problem at hand, the range-based least squares (R-LS) estimate
refers to the solution of the problem

minimize
x

F (x) =

m∑
i=1

(ri − ‖x− ai‖)2 (2)

Formulation (2) is connected to the maximum-likelihood
(ML) location estimation that determines x by examining
the probabilistic model of the error vector ε. If ε obeys a
Gaussian distribution with zero mean and covariance Σ =
diag(σ2

1 , . . . , σ
2
m), then the maximum likelihood (ML) location

estimator in this case is known to be

xML = arg min
x∈Rn

(r − g)T Σ−1(r − g) (3)
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where g = [g1 g2 . . . gm]T with gi = ‖x − ai‖. It follows
immediately that the ML solution in (3) is identical to the R-LS
solution of problem (2) when covariance Σ is proportional to
the identity matrix, i.e., σ2

1 = . . . = σ2
m = 1. In the literature

this is known as the equal noise power case. For notation
simplicity this paper focuses on the equal noise power case,
however the method developed below is also applicable to the
unequal noise power case by working on a weighted version of
the objective in (2) with {σ−2i , i = 1, . . . ,m} as the weights.

There are many methods for continuous unconstrained op-
timization [11], however most of them are local methods in
the sense they are sensitive to the choice of initial point, and
give no guarantee to yield global solutions when applied to
non-convex objective functions. Unfortunately, the objective
function in (2) is highly non-convex, possessing many local
minimizers even for small-scale systems. In this paper we
present an different approach to solve the positioning problem,
which employs a successive convex-concave procedure.

III. FITTING THE LOCALIZATION PROBLEM TO THE CCP
FRAMEWORK

A. Basic Convex-Concave Procedure

The CCP refers to an effective heuristic method to deal with
a class of nonconvex problems of the form

minimize
x

f(x)− g(x) (4a)

subject to: fi(x) ≤ gi(x) for: i = 1, 2, . . . ,m (4b)

where f(x), g(x), fi(x), gi(x) for i = 1, 2, . . . ,m are convex.
The basic CCP algorithm is an iterative procedure including
two key steps (in the k-th iteration where iterate xk is known):

(i) Convexification of the objective function and constraints
by replacing g(x) and gi(x), respectively, with their affine
approximations

ĝ(x,xk) = g(xk) +5g(xk)T (x− xk) (5a)

and

ĝi(x,xk) = gi(xk) +5gi(xk)T (x− xk)

for: i = 1, 2, . . . ,m
(5b)

(ii) Solving the convex problem

minimize
x

f(x)− ĝ(x,xk) (6a)

subject to: fi(x)− ĝi(x,xk) ≤ 0 (6b)
for: i = 1, 2, . . . ,m

Because of the convexity of all the functions involved, it
can be shown that the basic CCP is a descent algorithm and
the iterates xk converge to the critical point of the original
problem (4) [9]. The basic CCP requires a feasible initial point
x0 (in the sense that x0 satisfies (6b) for i = 1, 2, . . . ,m) to
start the procedure. By introducing additional slack variables,
a penalty CCP has been adopted to accept infeasible initial
points [12].

B. Problem Reformulation

We begin by re-writing the objective function in (2) up to
a constant as:

F (x) = mxTx− 2xT
m∑
i=1

ai

− 2

m∑
i=1

ri‖x− ai‖
(7)

The objective in (7) is not convex. This is because, for points
x that are not coincided with ai for 1 ≤ i ≤ m , the Hessian
of F (x) is given by

52F (x) = 2mI+2

m∑
i=1

ri
‖x− ai‖3

·

·
(

(x− ai) (x− ai)
T − ‖x− ai‖2I

)
which is not always positive semidefinite. On the other hand,
by defining

f(x) = mxTx− 2xT
m∑
i=1

ai

g(x) = 2

m∑
i=1

ri‖x− ai‖
(8)

the objective in (7) can be expressed as F (x) = f(x)− g(x)
with both f(x) and g(x) convex, hence it fits naturally into
(4a). Note that g(x) in (8) is not differentiable at the point
where x = ai for some 1 ≤ i ≤ m, thus we replace the term
5g(xk) in (5a) by a subgradient [13] of g(x) at xk, denoted
by ∂g(xk) as

∂g(xk) = 2

m∑
i=1

ri∂‖xk − ai‖

where

∂‖xk − ai‖ =


xk − ai

‖xk − ai‖
, if xk 6= ai

0, otherwise

Hence ĝ(x,xk) in (5a) is given by

ĝ(x,xk)=2

m∑
i=1

ri‖xk − ai‖+2 (x− xk)
T

m∑
i=1

ri∂‖xk − ai‖

= 2xT
m∑
i=1

ri∂‖xk − ai‖+ c

where c is a constant given by

c = −2

m∑
i=1

ria
T
i ∂‖xk − ai‖.

It follows that up to a multiplicative factor 1/m and an additive
constant term the convex objective function in (6a) can be
written as

minimize
x

F̂ (x) = xTx− 2xTvk (9)



where

vk = ā +
1

m

m∑
i=1

ri∂‖xk − ai‖, ā =
1

m

m∑
i=1

ai (10)

It is rather straightforward to see that given xk (in the k-
th iteration) the solution of the quadratic problem (9) can be
obtained as

xk+1 = ā +
1

m

m∑
i=1

ri∂‖xk − ai‖ (11)

C. Imposing Error Bounds and Penalty Terms

The algorithm being developed can be enhanced by impos-
ing a bound on each squared measurement error, namely

(‖x− ai‖ − ri)2 ≤ δ2i (12)

which leads to

‖x− ai‖ − ri − δi ≤ 0 (13a)
ri − δi ≤ ‖x− ai‖ (13b)

for 1 ≤ i ≤ m. The constraints in (13a) are convex and fit into
those in (6b) with fi(x) = ‖x−ai‖− ri− δi and gi(x) = 0,
while those in (13b) are in the form of (4b) with fi(x) =
ri − δi and gi(x) = ‖x − ai‖. Following CCP (see (5b)),
gi(x) = ‖x− ai‖ is linearized around iterate xk to

ĝi(x,xk) = ‖xk − ai‖+ ∂‖xk − ai‖T (x− xk)

and (13b) is convexified as

ri − δi ≤ ‖xk − ai‖+ ∂‖xk − ai‖T (x− xk)

which now fits into (6b), or equivalently

−‖xk − ai‖ − ∂‖xk − ai‖T (x− xk) + ri − δi ≤ 0 (14)

We remark that constraint (14) is not only convex but also
tighter than (13b). As a matter of fact, the convexity of the
norm ‖x− ai‖ implies that it obeys the property

‖x− ai‖ ≥ ‖xk − ai‖+ ∂‖xk − ai‖T (x− xk)

Therefore, a point x satisfying (14) automatically satisfies
(13b). Summarizing, the convexified problem in the k-th
iteration can be stated as

minimize
x

xTx− 2xTvk (15a)

subject to: ‖x− ai‖ − ri − δi ≤ 0 (15b)

−‖xk − ai‖ − ∂‖xk − ai‖T (x− xk) + ri − δi ≤ 0 (15c)

A technical problem making the formulation in (15) difficult
to implement is that it requires a feasible initial point x0. The
problem can be overcome by introducing nonnegative slack
variables si ≥ 0, ŝi ≥ 0, for i = 1, . . . ,m into the constraints
in (15b) and (15c) to replace their right-hand sides (which
are zeros) by relaxed upper bounds (as these new bounds

themselves are nonnegative variables). This leads to a penalty
CCP (PCCP) based formulation as follows:

minimize
x,s,ŝ

xTx− 2xTvk + τk

m∑
i=1

(si + ŝi) (16a)

subject to: ‖x− ai‖ − ri − δi ≤ si (16b)

−‖xk − ai‖ −
(xk − ai)

T

‖xk − ai‖
(x− xk) + ri − δi ≤ ŝi (16c)

si ≥ 0, ŝi ≥ 0, for: i = 1, 2, . . . ,m (16d)

where the weight τk ≥ 0 increases as iterations proceed until
it reaches an upper limit τmax. By using a monotonically
increasing τk for the penalty term in (16a), the algorithm
reduces the slack variables si and ŝi very quickly. As a result,
new iterates quickly become feasible as si and ŝi vanish. The
upper limit τmax is imposed to avoid numerical difficulties that
may occur if τk becomes too large and to ensure convergence
if a feasible region is not found [9]. Consequently, while
formulation (16) accepts infeasible initial points, the iterates
obtained by solving (16) are practically identical to those
obtained by solving (15).

D. The Algorithm

The input parameters for the algorithm include the bound δi
on the measurement error. Setting δi to a lower value leads to
a “tighter” solution. On the other hand, a larger δi would make
the algorithm less sensitive to outliers. If measurement noise
ε obeys a Gaussian distribution with zero mean and known
covariance Σ = diag(σ2

1 , . . . , σ
2
m), then δi can be expressed

as δi = γσi, where γ is a parameter that determines the width
of confidence interval. For example, for γ = 3 we have the
probability Pr{|εi| ≤ 3σi} ≈ 0.99. Other input parameters
are initial point x0, maximum number of iterations Kmax,
initial weight τ0, and upper limit of weight τmax (to avoid
numerical problems that may occur if τi becomes too large).

As mentioned in Sec. 2, the original LS objective is highly
non-convex with many local minimums even for small-scale
systems. Consequently, it is of critical importance to select
a good initial point for the proposed PCCP-based algorithm
because PCCP is essentially a local procedure. Several tech-
niques are available, these include: (i) Select the initial point
uniformly randomly over the same region as the unknown
radiating source; (ii) Set the initial point to the origin; (iii)
Run the algorithm from a set of candidate initial points
and identify the solution as the one with lowest LS error.
Typically, comparing the results from n distinct initial points
shall suffice. For the planar case (n = 2), for example, it
is sufficient to compare the two intersection points of the
two circles that are associated with the two smallest distance
readings as the target is very likely to be in the vicinity of
these sensors; and (iv) Apply a global localization algorithm
such as those in [7] to generate an approximate LS solution,
then take it as the initial point to run the proposed algorithm.
The algorithm can be now outlined as follows.



PCCP-based LS Algorithm for Source Localization
Step 1: Input sensor locations {ai, i = 1, . . . ,m}, range

measurements {ri, i = 1, . . . ,m}, x0,Kmax, τ0, τmax, µ >
0, γ, σ, and set k = 0.

Step 2: Form vk as in (10) and solve (16). Denote the
solution as (s∗, ŝ∗,x∗).

Step 3: Update τk+1 = min (µτk, τmax), set k = k + 1.
Step 4: If k = Kmax, terminate and output x∗ as the

solution; otherwise, set xk = x∗ and repeat from Step 2.

IV. NUMERICAL RESULTS

For illustration purposes, the proposed algorithm was ap-
plied to a network with five sensors, and its performance was
evaluated and compared with existing state-of-the-art methods
by Monte Carlo simulations with a set-up similar to that of [7].
SR-LS solutions were used as performance benchmarks for the
PCCP-based LS Algorithm. The system consisted of 5 sensors
{ai, i = 1, 2, . . . , 5} randomly placed in the planar region
in [−15; 15] × [−15; 15], and a radiating source xs, located
randomly in the region {x = [x1;x2],−10 ≤ x1, x2 ≤ 10}.
The coordinates of the source and sensors were generated for
each dimension following a uniform distribution. Measurement
noise {εi, i = 1, . . . ,m} was modelled as independent and
identically distributed (i.i.d) random variables with zero mean
and variance σ2, with σ being one of four possible lev-
els {10−3, 10−2, 10−1, 1}. The range measurements {ri, i =
1, 2, . . . , 5} were calculated using (1). Accuracy of source
location estimation was evaluated in terms of average of the
squared position error error in the form ‖x∗ − xs‖2, where
xs denotes the exact source location and x∗ is its estimation
obtained by SR-LS and PCCP methods, respectively. In our
simulations parameter γ was set to 3 and the number of itera-
tions was set to 20. The proposed method was implemented by
using CVX [14] and implementation of SR-LS followed [7].
The PCCP algorithm was initialized with intersection points
of the two circles that are associated with the two smallest
distance readings. A candidate solution point with lowest LS
error in (2) was chosen as a PCCP solution. In cases when
the circles did not intersect due to high noise level, the initial
point was set as a midpoint between the centers of the two
circles.

Table I provides comparisons of the PCCP with SR-LS and
MLE, where each entry is averaged squared error over 1,000
Monte Carlo runs of the method. The MLE was implemented
using Matlab function lsqnonlin [15], initialized with the same
point as PCCP. It is observed that, comparing with SR-LS, the
estimates produced by the proposed algorithm are found to be
closer to the true source locations in MSE sense. The last
column of the table represents relative improvement of the
proposed method over SR-LS solutions in percentage.

V. CONCLUSION

In this paper, a new iterative method for locating a radi-
ating source based on noisy range measurements have been
proposed. The method is developed by transforming the orig-
inal least-squares problem to a difference-of-convex-functions

TABLE I
AVERAGED MSE FOR SR-LS AND PCCP METHODS

σ MLE SR - LS PCCP R.I.

1e-03 6.0159e-01 1.3394e-06 9.5243e-07 29%

1e-02 3.5077e-01 1.4516e-04 9.5831e-05 34%

1e-01 3.7866e-01 1.2058e-02 8.7107e-03 28%

1e+0 1.4470e+00 1.3662e+00 1.2346e+00 10%

programming problem which is in turn relaxed to a sequential
convex minimization based on PCCP that can be efficiently
solved with an infeasible initial point. Along the way, we see
that CCP allows a natural embedding of the LS formulation
for localization into a sequential convex formulation in that
no additional terms and functions are introduced into the
procedure up until (15). Numerical results are presented to
illustrate the proposed algorithms in comparison with the state-
of-the-art results from the literature.
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