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Abstract—Federated learning (FL) deployed in the edge
network environment is a promising approach for combining
the separated training results based on the isolated local data
sensed by various Internet of Things (IoT) devices. However, the
limited computing resources for the training of various applica-
tion models in each edge server and the communication burden
among the edge server and numerous IoT devices greatly impact
the realization of IoT intelligence. In this article, we propose
transform-domain FL schemes based on discrete cosine trans-
form (DCT-FA) and discrete wavelet transform (DWT-FA) to
achieve better training efficiency and reduce the communica-
tion burden for IoT devices. Furthermore, when the amount of
training data is limited, we propose to combine time-domain
features and frequency-domain features in FL (CDCT-FA) that
turns out to achieve much higher test accuracy. From the exper-
imental results, the transform-domain FL schemes are shown to
be promising, given the different constraints and requirements
of various IoT intelligence applications.

Index Terms—Federated learning (FL), Internet of Things
(IoT) intelligence applications, transform-domain features.

I. INTRODUCTION

TO SUPPORT smart building, intelligent transportation,
ubiquitous e-healthcare, and smart home [1], massive

Internet of Things (IoT) devices, such as sensors, wearable
devices, and mobile devices are growing in both power and
popularity. Numerous data collected by various IoT devices
are key to unlock the potential of artificial intelligence in our
daily lives [2], [3]. However, IoT devices often have limited
resources and energy supply. To fully unleash the potential of
the data sensed by IoT devices, more computation resources
are needed for data processing and learning. However, the
conventional approach to send data to remote cloud involves
high-volume transmissions which can be costly and lead to
long delay. Furthermore, privacy can also be a major concern
when transporting sensitive data across public networks [4].

Therefore, storing and processing data locally with the assis-
tance of edge servers is more desirable [5], [6]. However, it is
a challenge to achieve high processing accuracy by individual
edge server, given the limitations of local data sets. Federated
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learning (FL) provides a framework to train models in a dis-
tributed fashion [7] to address the challenge by involving
both local processing in edge servers and remote coordina-
tion in the cloud data center [8]. Efforts have been focused on
designing advanced FL algorithms to achieve a better learn-
ing performance, including privacy preservation [9], [10] and
learning efficiency [11].

There are, however, significant challenges for FL. First,
since each IoT device collects its own local data, statistical
heterogeneity is a common issue among the collected data
from IoT devices located in different regions with different
environments. FL also involves a multitude of edge servers
with diverse coverage availability and hardware, such as stor-
age, computational, and communication capabilities. An FL
process relies on local models trained by edge servers, consid-
eration of the heterogeneity among edge servers leads to quite
different local objective functions corresponding to different
local optimums. As a result of these, the local model trained
on each edge server may be biased, and in effect the hetero-
geneity may cause significant local training drifts. Moreover,
efforts in the local training can be neutralized in the conven-
tional strategy based on averaging the trained local models
which makes the global model very hard to converge. In addi-
tion, the exchange of updated models between the edge servers
and the central cloud server implies that the time required
to tune the global model depends not only on the number
of training iterations but also on the delay induced by trans-
mitting the model updates at each FL iteration. Each edge
server needs to wait till receiving the global model update
and then resumes the training for the next iteration. Here,
the communication procedure can be a bottleneck affecting
the training time of global models. Clearly, reduction of the
communication time will greatly improve the efficiency of the
entire training procedure. The work presented in this article
is motivated by the points made above, where we focus our
investigation on an FL approach to address issues concerning
statistical heterogeneity of the model, reduction of communi-
cation cost, and ensuring processing accuracy given limited
time and computing resources at edges.

Specifically, we propose to explore the training based on
the data samples in their transformed domains which may
reduce the communication burden of IoT devices and in
some cases enhance the reliability and accuracy of federated
learned models. The proposed transform-domain FL algo-
rithms include 1-D and 2-D discrete cosine transform with
different preserve rates (DCT-FA), discrete wavelet trans-
form with different decomposition levels (DWT-FA), and the
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scheme combines the time-domain features and frequency-
domain features (CDCT-FA). Both DCT-FA and DWT-FA are
shown to reduce the computation burden in edge servers and
communication cost without sacrificing the application model
accuracy due to their leading ability to compact the most
important information of the raw data samples into fewer fea-
tures. In addition, we examine a transform-domain scheme,
CDCT-FA, which takes both the advantage of time-domain and
frequency-domain features, that is, shown to achieve consider-
ably improved processing accuracy, especially, when the data
set is of limited volume. We have conducted extensive simu-
lations to evaluate the performance of the transform-domain
FL schemes. Our numerical results show that the proposed
transform-domain FL algorithms are superior to the popu-
lar FL algorithms, in both overall training time and learning
accuracy.

The remainder of this article is organized as follows. Related
works are provided in Section II. Section III illustrates the
system model and formulates the federated training problem.
The proposed transform-domain FL algorithms are elabo-
rated in Section IV. The theoretical analysis is provided in
Section V. Simulation results are presented in Section VI
to illustrate the training efficiency with different settings,
followed by the concluding remarks in Section VII.

II. RELATED WORKS

Although task offloading, workload scheduling, and service
migration for IoT systems have been heavily investigated, IoT
intelligence is still in its infancy stage. Pushing the AI fron-
tiers to the individual IoT devices is promising to fully unleash
the potential of the zillion bytes of data generated by billions
of IoT devices per year. However, IoT intelligence is obtained
from the heterogeneous local data sets with the federated set-
ting in the training procedure of IoT devices. Real-world data
samples collected by individual IoT devices contain a mixture
of many effects, and how to deal with the cross device differ-
ences in real-world partitioned data sets for efficient federated
training is an important open question.

To tackle the issues of communication cost and delay of
FL, it was proposed that clients perform multiple local model
updates before communicating with the central server [12].
One of the most popular FL techniques is the Federated
Averaging (FedAvg) algorithm [13]. For homogeneous clients,
FedAvg coincides with the parallel stochastic gradient descent
(SGD) analyzed in [14], and its asymptotic convergence has
been proven [15]. Empirically, the FedAvg is found working
well when the local data sets are independently identically
distributed (IID) and local SGD updates are averaged because
because in this case the local gradient provides an unbiased
estimate of the global gradient [16].

However, a client may differ from its peers in multiple
aspects [7], [17] and statistical heterogeneity is com-
mon with data being nonindependent and identically dis-
tributed (non-IID) among clients. Many authors have
proposed non-IID objective models to address the data varia-
tion [7], [18], [19], [20], [21], where the FedAvg is shown
to provide substantially degraded performance due to data

heterogeneity because with non-IID local data sets the local
stochastic gradient becomes a biased estimate of the global
gradient. Zhao et al. [22] was among the first to observe the
challenges facing FedAvg when dealing with heterogeneous
local data. Wang et al. [8], Li et al. [18], and Yu et al. [23]
applied the bounded gradients and analyze how it affects the
training drift due to the use of non-IID local data. Analysis
of the FedAvg that quantifies how data heterogeneity degrades
the convergence rate in this scenario can be found in [19], [20],
and [21].

To improve the performance of FL with data heterogeneity,
FedProx proposed in [7] can be viewed as a generalization
and reparametrization of FedAvg by adding a proximal term
to local objective functions. Another promising direction to
address the challenge arising from data heterogeneity is to
apply variance reduction techniques into FL [24]. SCAFFOLD
was proposed to use variance reduction to correct the client-
drift in its local updates [21]. By adapting an arbitrary cen-
tralized optimization algorithm to the cross-device FL setting,
MIME is proposed to use a combination of control-variates
and momentum at each client-update step to ensure that each
local update mimics that of the centralized method running on
independent identically distributed data [25].

To reduce the communication cost within each train-
ing round and make the collaboration more flexible among
dynamic client environment, a line of works assumed
that the server can arbitrarily sample a set of clients
to collect responses accordingly in every communication
round [7], [20], [21], [26]. This stochastic client selection is
desirable in many practical scenarios as it can reduce the com-
munication cost in each training round and handle the problem
of arbitrary device availability [27].

In this article, our focus is on developing methods to deal
with heterogeneous data sets with a synchronous architecture
as recommended in [13]. Regarding to the training procedure
in IoT devices, we apply periodic decentralized SGD (PD-
SGD) updating to carry out the training procedure in each
IoT device with multiple local updates [28], [29], [30]. The
proposed methods are based on the observation that com-
pressed frequency-domain features are of considerable help in
mitigating the heterogeneity of the local data sets and reducing
model size as well as the cost of communication between the
central cloud and edge servers as well as the communication
cost among edge servers and IoT devices, while providing suf-
ficient information of the original data necessary to maintain
satisfactory convergence.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this section, we propose an FL framework for edge-
enabled IoT intelligence as illustrated in Fig. 1. Massive data
are collected by various IoT devices, such as temperature and
humidity sensors in smart buildings, road surveillance cameras
and carbon dioxide sensors in smart transportation, wearable
devices in smart healthcare, and networking home devices in
smart homes. However, due to the limited battery life, process-
ing capacity, and storage space, each individual IoT device is
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Fig. 1. FL framework for edge-enabled IoT intelligence.

mainly used to collect data and conduct only simple comput-
ing tasks. To train the AI models, numerous sensed data need
to deliver to edge servers close to the end IoT devices.

The edge server alleviates the training burden on individual
IoT devices, however, the coverage of stationary edge server
is also limited leading to the limited amount of local training
data. If massive data are sent from all edge servers to the
central cloud, it will introduce a heavy burden to the network
and more privacy concerns. To achieve good performance for
supporting AI applications, multiple edge servers cooperate
to finish the application model training procedure. We apply
the FL framework to conduct the cooperation among edge
servers. Each edge server conducts a few training steps on its
local model parameters then transports its local model to the
central cloud. The central cloud will aggregate all the locally
updated models in each round by taking a weighted average
of the local model parameters in proportion to the size of local
data sets [31] and then distributes the aggregated global model
to the edge network for further local parameter updating.

B. Federated Optimization Problem Setup

There are E edge servers denoted as {si, i = 1, 2, . . . ,E}.
Under the coverage of the service region of edge server si,
there are a set of IoT devices Ii collecting and delivering data
to si. The edge servers receive the data from their service
region and maintain local data sets to train their local model
parameters. We use w to represent the global model parame-
ters and it is shared with all edge servers as the initialization
of each local model. We use Di to denote the local data set for
edge server si with ni local training samples for i = 1, 2, . . . ,E
and the overall sample number n =∑N

i=1 ni. There is no over-
lap among different local data sets, i.e., Di∩Dj = ∅ whenever
i �= j. All data samples in the local data set Di of edge server si

construct the local objective function fi(w). The optimization
problem in an FL objective is formulated as

minimize
w

f (w) =
N∑

i=1

ni

n
fi(w). (1)

It clearly shows that the central objective function f (w) is a
convex combination of the local objective fi(w). For the local
training procedure in edge server si, it tries to minimize its

own objective function fi(w) which will lead to a local optimal
solution. Due to the heterogeneity of the local training data
sets, different local objective functions will be very different
from each other. The local training procedure will update the
model into different directions which leading it very hard to
converge from the global view. Therefore, minimizing fi(w)
and average the results cannot provide a promising solution
to the global objective f (w), unless the local functions are all
the same, i.e., local solutions w∗

i for i = 1, 2, . . . ,E are all
the same which is highly unlikely in practice.

C. Role of Features in Local Objectives

To clearly show the problem of heterogeneity, we formu-
lated the connection of the data features and the local objective
function as follows. For generality, we assume the local objec-
tive function fi(w) is formulated by one L layer neural network
combined with softmax regression loss. The features of the
data sample are transmitted to multiple neurons by linearly
combining the link weights that connect each input node and
the neurons to obtain their preactivation value and compute the
post-activation value by the activation function in each neu-
ron. Then, the successive neuron layers feed the post-activation
value into one another until the output layer.

We define each layer contains p1, p2, . . . , pL neurons. The
post-activation outputs of hidden layers are denoted by L
vectors h1,h2, . . . ,hL with dimension p1, p2, . . . , pL, respec-
tively. The weights between the lth hidden layer and the
(l + 1)th hidden layer are denoted by a connection matrix
Wl ∈ Rpl×pl+1 , and the forward computation part of this
transformation between hidden layers are denoted as hl+1 =
�(WT

l+1hl), where �(·) represents the activation function and
∀l ∈ {1, . . . ,L− 1}. For (x, y) ∈ Di, the data sample x is fed
into the neural network at the input layer, where the connec-
tion matrix W0 ∈ RN×p1 linearly combining the input features
and deliver the result through the activation function to the first
hidden layer formulated as h1 = �(WT

0 x). We define the con-
nection matrix WL+1 ∈ RpL×C connecting the Lth hidden layer
and the output layer, the forward computation is formulated as

o = �
(

WT
L+1�

(
WT

L, . . .�
(

WT
0 x

)))
(2)

where o ∈ RC×1 denotes the output vector in the output layer.
Then, by applying the softmax regression loss, the detailed
formulation for the local objective function is written as

fi(w) = 1

ni

∑

(x,y)∈Di

log

⎛

⎝
C∑

j=1

eoi

⎞

⎠− oy, i = 1, 2, . . . ,E (3)

where we use w to represent all the parameters in the neu-
ral network for simplicity. We assume that the neural network
structures are the same, then it is clearly shown that the fea-
tures in local data set determines the local objective function.
Due to the heterogeneity of the local data samples, the optimal
solution of local objective functions are quite different from
each other. Since the local training efforts update the model
parameters toward their own minimizers, the problem of the
data heterogeneity directly shows up.
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D. One Round Updating in Federated Optimization

In round r, we sample Sr ⊆ [E] edge servers at random and
|Sr| = S, the global model wr−1 is shared to the selected local
parameter ŵr

i,0 = wr−1 and update the local parameters with
local step size αl for k ∈ K local iterations

ŵr
i,k = ŵr

i,k−1 − αlgi
(
ŵr

i,k−1
)

(4)

ŵr
i,K = wr−1 −

K∑

k=1

αlgi
(
ŵr

i,k−1
)
. (5)

The local updating in the ith edge server applies stochastic
gradient directions. Let fi(w) = Eξi [fi(w; ξi)], and gi(w) =
�fi(w; ξi) which is an unbiased gradient estimation of fi with
variance bounded by σ 2. The new global parameters are
updated with global step size αg as

wr = wr−1 + αg

S

∑

i∈Sr

(
ŵr

i,K − wr−1
)
. (6)

We define the effective step-size α̃ = Kαlαg, so that the
expectation of server update in round r is written as

δr−1 = − α̃

KS

S∑

i=1

K∑

k=1

gi
(
ŵr

i,k−1
)
.

IV. TRANSFORM-DOMAIN FEDERATED LEARNING

At the beginning of the training, i.e., during the first iteration
of the loop, the central cloud initializes the model parameters of
the required application and transmits them to the edge network.
The training procedure in each edge server minimizes the local
loss function formulated by the model and the local training
data set, in that the cloud server frequently participates in
the training procedure by periodically aggregating the local
updated parameters into the global model. Below, we propose
the transform-domain FL techniques to improve the training
efficiency as well as the computing and communication cost for
the local training procedure. The transform-domain federated
averaging algorithm and the supervised aggregation scheme
are illustrated in Algorithm 1 and Procedure 1, respectively.

A. Usefulness of Frequency Features

Let x and y be two nonzero samples with the same
dimension. We define the cosine similarity between x and y as

S(x, y) = xTy
||x||2 · ||y||2 .

Note that S(x, y) is precisely the cosine of the angle between
vectors x and y, and it is a similarity measure because it is
merely the normalized inner product which quantifies the cor-
relation between the two samples. It is known that, to a large
extent, the information of the original input data are well
represented by a small number of DCT coefficients in the low-
frequency region [32]. Utilizing these compressed frequency
features is found to have increased cosine similarity relative to
that of the original features. For example, for the two images
in Fig. 2, the cosine similarity between the bitmap features is
0.9055. If we focus on the first 1000 frequency features out of
the entire 132 300 DCT features, the cosine similarity increases

Algorithm 1 Transform-Domain Federated Averaging
Algorithm

1: Initialize global model parameters w0 in central cloud
2: Initialize {Di}Ei=1 = ∅ and {D̃i}Ei=1 = ∅

3: for r← 1 to R do
4: Distribute global model to the edge network
5: Sr ← random set of S edge servers
6: for i ∈ Sr do
7: Initialize local mode ŵr

i,0 = wr−1

8: for k← 1 to K do
9: Sample batch {(xj, yj)}mj=1 from local data set

10: Initialize transform-domain feature batch D̂ = ∅

11: for j← 1 to m do
12: if (xj, yj) /∈ D̃i then
13: Generate transform-domain features ẑj of xj
14: Di ← Di ∪ (ẑj, yj) and D̃i ← D̃i ∪ (xj, yj)

15: end if
16: Fetch (ẑj, yj) from Di and D̂i ← D̂i ∪ (ẑj, yj)

17: end for
18: Compute gi(ŵ

r
i,k−1) based on D̂i

19: ŵr
i,k = ŵr

i,k−1 − αlgi(ŵ
r
i,k−1)

20: end for
21: end for
22: Model aggregation following Supervised Aggregation

Scheme in Procedure 1.
23: end for

dramatically to 0.9802. This provides an intuitive comparison
of the original features and the corresponding transfer domain
features from different traffic surveillance cameras which are
representative IoT devices in practice. Since each local objec-
tive function is determined by its local training feature vectors,
increasing feature vector similarity makes the landscape of the
local objective functions more similar to each other. When
local objective functions get more similar, the local gradi-
ent drift is reduced along the updating trajectory, which in
turn leads to less heterogeneity among different local objec-
tive functions. As a result, the use of DCT features is shown
to make the training procedure more efficient and, hence, con-
verge faster. Furthermore, the substantially compressed sample
features also lead to improved local training speed and reduced
communication cost due to reduced model parameter space.

Besides the intuitive explanation, below we provide an
analytical argument concerning the usefulness of frequency-
domain features. As common practice in optimization, consid-
erable training progress is made in a small number of initial
iterations. Thus, most of the training effort is spent in search-
ing the local area near the solution. To conduct a local analysis,
assuming the ith local objective function fi is a βi-smooth and
μi-strongly convex function, w is the current global model
and w∗ is the optimal global model. From Lemma 1 (see the
Appendix), we have

fi(w)− fi
(
w∗) ≥ 1

2βi

∥
∥�fi(w)− �fi

(
w∗)∥∥2

+ �fi
(
w∗)T(

w − w∗).
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Fig. 2. Examples of DCT features.

Then, we sum over all local objectives and take the average
on both sides. Since �f (w∗) = 0, we obtain that

f (w)− f
(
w∗) ≥ 1

E

E∑

i=1

1

2βi

∥
∥�fi(w)− �fi

(
w∗)∥∥2

. (7)

By defining β̂ = max{βi}Ei=1, (7) implies that

2β̂
(
f (w)− f

(
w∗)) ≥ 1

E

E∑

i=1

∥
∥�fi(w)− �fi

(
w∗)∥∥2

. (8)

Based on (8) and Lemma 2, we bound the local gradients as

1

E

E∑

i=1

‖�fi(w)‖2

≤ 2

E

E∑

i=1

∥
∥�fi(w)− �fi

(
w∗)∥∥2 + 2

E

E∑

i=1

∥
∥�fi

(
w∗)∥∥2

≤ 4β̂
(
f (w)− f

(
w∗))+ 2

E

E∑

i=1

∥
∥�fi

(
w∗)∥∥2

. (9)

Utilizing the frequency features, it is possible to make the local
objectives more similar to each other. As a result, the optimal
global model gets closer to the optimal points of the local
objectives, resulting in a smaller average magnitude of the
local gradients with respect to w∗ defined by B

B = 1

E

E∑

i=1

∥
∥�fi

(
w∗)∥∥2

.

From the convergence analysis provided in Section V, it will
become clear that a smaller B implies a tighter upper bound of
the closeness of the model learned to the optimal model after a
given rounds of iterations. To demonstrate the idea of utilizing
frequency features to decrease the value of B, we computed B
with the MNIST data set, with 10% of the low-frequency DCT
features, achieving B = 4.7106. This compares favorably with
a B = 55.8658 when only the original features were used.

B. Discrete Cosine Transform-Based Federated
Averaging Algorithm

The discrete cosine transform (DCT) which is known to pro-
vide compressed frequency-domain features [32] is employed

as a part of our feature engineering to preprocess the data
sample at each IoT device. Assuming each data sample
has N features, i.e., x ∈ RN×1, we transform each sam-
ple into a frequency space by defining a frequency-related
coordinate system. The number of dimensions indicates the
resolution of the spectrum and each dimension in this spec-
tral space represents one frequency we select. To ensure that
the frequency-related basis vectors are orthogonal, we set the
number of the basis vectors as the same as the feature number
of time-domain samples. By designing the frequency-related
basis vectors to be orthonormal vectors, the transformation of
data sample features from the time domain into the frequency
domain is regarded as a projection of the sample on the
frequency-related basis vectors.

The frequency-related coordinate system is denoted by
U = [u1,u2, . . . ,uN] ∈ RN×N . Here, we select the DCT as
such a system due to its excellent energy compaction and com-
pression ability [32], and, in this case, the kth basis vector is
given by

uk = αk

√
2

N

[
cos

(
1·kπ
2N

)
· · · cos

(
(2N−1)·kπ

2N

)]T
(10)

where k = 0, 1, 2, . . . ,N − 1 and

αk =
{

1√
2
, k = 0

1, k = 1, 2, . . . ,N − 1.

The orthonormality of frequency basis vectors is guaranteed
where the magnitude of other basis vectors are ||uk||22 = 1 for
k = 0, 1, 2, . . . ,N−1 and the basis vectors are also orthogonal
to each other uT

i uj = 0 for i, j = 0, 1, 2, . . . ,N−1, and i �= j.
Each basis vector ui ∈ RN×1 combines the N features

in the original sample x to generate a spectral feature
which is regarded as the projection of sample x on the
frequency-domain basis vector uT

i x. Let zk = uT
k x be the kth

frequency-domain feature, namely,

zk = uT
k x = αk

√
2

N

N−1∑

n=0

xn cos2
(
(2n+ 1) · kπ

2N

)

where k = 0, 1, 2, . . . ,N − 1. This transformation proce-
dure is directly applied to the raw data, and can be done in
IoT devices. We now define a preserve rate p for DCT-based
feature extraction as the ratio of the number of the most sig-
nificant components in z that are to be retained to the length
of z. Since p is rather small (typical in the range between 0.1
and 0.3), using N×p most significant components of z as fea-
tures implies a big reduction of the input space, and, hence,
reduced cost in training and communication.

Alternatively, we may apply 2-D DCT on the sensed data
in IoT devices. For a 2-D sample X ∈ RN×N , the 2-D DCT
coefficient matrix is regarded as we project all the rows of X
into frequency space U, i.e., XU, and then projecting all the
columns of XU into U again, i.e., Z = UTXU. We rearrange
the frequency features from the 2-D DCT coefficient matrix Z
following the zig-zag searching scheme into a feature vector
z, and then apply the preserve rate into the feature vector and
transmit the select portion to the edge server for local training.
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C. Discrete Wavelet Transform-Based Federated
Averaging Algorithm

Effective features of reduced dimensionality may also be
acquired using discrete wavelet transform (DWT). Here, we
apply the Haar wavelet which is characterized by the two-tap
low-pass and high-pass filters h0 =

[
(1/
√

2) (1/
√

2)
]T

and

h1 =
[−(1/√2) (1/

√
2)

]T
, respectively.

For 1-D DWT in IoT devices with sensed data sample x ∈
RN×1, an input sample is projected onto the basis vector h0
with block length 2 when passing through the low-pass filter.
We denote the ith feature block as x̂i ∈ R2×1, and there are
also N feature blocks in total for time domain sample x where
there is one feature overlap between every two adjacent feature
blocks, e.g., x̂i = [xi, xi+1] and x̂i+1 = [xi+1, xi+2], and there
are zero padding for the first feature block x̂1 and the last
feature block x̂N.

The output of the low-pass filter is one vector with length
N where the ith term is the result of the inner product of hT

0 x̂i.
To eliminate the feature overlap impact, the results from the
low-pass filter are downsampled with factor 2, and the result
after the downsampling denoted by a1 is called the approx-
imation information of DWT with first-level decomposition.
The same procedure is also applied to the high-pass filter
whose outputs are called the details of DWT with first-level
decomposition.

In DWT-FA, we use the approximation information of the
DWT results with different decomposition levels. Note that
the approximation features in the first-level decomposition are
of length N/2, a1 ∈ RN/2×1, due to the downsampling. The
approximation features from the first-level decomposition are
used as the input to the second-level decomposition where the
transform is carried out in the same way. First, a1 is fed into
the low-pass filter with impulse response h0 whose output is
in turn downsampled by factor 2 to obtain the approximation
information of the second-level decomposition a2 ∈ RN/22×1.
Clearly, the length of the ith level approximation features is
of N/2i.

For 2-D DWT, the input samples are matrices, e.g., X ∈
RN×M , the transform procedure by passing the low-pass filter
with impulse response h0 and down-sampling-by-2 operation
will be applied on the row vectors of X first, and then apply all
column vectors of the previous results into the same procedure
to get the approximation information of the first-level decom-
position A1 ∈ RN/2×M/2. For multiple-level decomposition, the
feature block projection and downsampling-by-2 operation are
applied to all rows and then all columns of each data sample
collected by IoT devices in each level decomposition. Thus,
with the same decomposition level, 2-D DWT preserves only
half of the size of that in 1-D DWT which reduces more com-
munication time at the cost of possible degradation in training
accuracy.

D. Combined Discrete Cosine Transform-Based Federated
Averaging Algorithm

The features of the samples sensed by IoT devices may
be insufficient to guarantee target training accuracy due to
the limited sensing capability of individual IoT devices.

Furthermore, the quality of the sensed feature may also
be insufficient to make effective local training. Therefore,
we propose combined DCT-based federated averaging algo-
rithm (CDCT-FA) which is an extension of the DCT-FA
algorithm by combining the time-domain features and the
frequency-domain features. Since the primary information
carried by the data sample remains after DCT transforma-
tion and the frequency features in high frequencies can be
removed due to little energy in that part, the additional
frequency-domain features are shown to greatly enhance
the performance of the FL over the edge network with
massive IoT devices without causing much extra training
time.

The advantages of more efficient training with DCT or DWT
features may be described from two perspectives: first, the
transform-domain features are able to increase the sample-
vector similarity which leads to more similar local objective
functions and, hence, reduced local gradient drift. This results
in reduced heterogeneity and faster convergence. Second, the
compressed features (by DCT or DWT) lead to reduced dimen-
sion of model parameters and, hence, increased training speed
and reduced communication cost. Unlike the technique that
uses DCT or DWT alone for the sake of dimensionality reduc-
tion with compressed features, the CDCT method employs
features of increased dimensionality for the reason that the
features are now much enriched as they cover both funda-
mental domains of space (or time) and frequency. The IoT
sensors send the original features to the edge servers which
further calculate the DCT values for each sample. The CDCT
method does not increase the communication cost between
the sensors and the edge servers because the sensors only
need to send the original feature vectors to the edge servers.
When the feature calculation is conducted in the edge servers,
CDCT features are obtained by combining the original fea-
tures and the low-frequency features. When the compressed
frequency features are combined with the original data, there
is no gain in the mode parameter reduction, however, it
yields a data set with several advantages: the combined data
contain enriched features from two fundamental and com-
plimentary domains (i.e., the spatial (or time depending on
the application) domain and frequency domain) and, hence,
is expected to produce improved performance; moreover, data
samples combined with low-frequency features are found to
have increased cosine similarity relative to that of the origi-
nal features. The increased cosine similarity of features based
on CDCT in the example in Fig. 2 achieved 0.9401 with
1000 low-frequency features in addition to the original fea-
tures, while the cosine similarity between the original features
was found to be 0.9055. This demonstrates that the feature
similarity based on CDCT technique is higher than that of
the original sample features, but lower than that based only
on DCT-compressed features. There is a tradeoff between
increasing the feature similarity and the test accuracy. Low
feature similarity leads to severe drift in the local updating
which becomes even worse in the nonoverlap local data set
scenario. High feature similarity mitigates the heterogeneity,
however, it may cause some loss of critical information to dis-
tinguish different samples. The CDCT features make a tradeoff
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Algorithm 1 Supervised Aggregation Scheme
1: Initialize current best global model parameters w∗

g and the
corresponding valid accuracy ψg∗ .

2: for t← 1 to T do
3: if t < ψr then
4: Weighted aggregate w←∑E

i=1 ρiŵi
5: Evaluate the valid accuracy ψg of w
6: if ψg∗ < ψg then
7: Update w∗← w and ψg∗ ← ψg

8: end if
9: else

10: Weighted aggregate w←∑E
i=1 ρiŵi

11: Evaluate the valid accuracy ψg of w
12: if ψg∗ < ψg then
13: Update w∗

g ← w and ψg∗ ← ψg

14: end if
15: if ψg ≤ ψa then
16: Replace global model by w← w∗

g
17: end if
18: end if
19: end for

between the two, which appears to be the reason of its higher
accuracy.

E. Supervised Aggregation Scheme

The supervised aggregation scheme we propose is shown
in Procedure 1. To control the model flipping from traditional
average aggregation mode to the supervised aggregation mode,
we define two parameters, namely, the accuracy threshold ψa

and the round threshold ψr. The round threshold ψr refers
to the round number from where the supervised aggregation
mode starts. Before ψrth round, the locally trained model
parameters are aggregated by weighted average. After the ψrth
training round, we record the current best global model w∗

g .
At each training round, first, the local models are aggregated
by the weighted average, then the validate accuracy achieved
by the current weighted aggregated global model is compared
with the predefined accuracy threshold ψa: if the performance
is lower than the accuracy threshold ψa, then the current global
model is replaced by the recorded best performance global
model w∗

g; otherwise, the current aggregated global model will
be distributed to the edge network for the next training round.

V. CONVERGENCE ANALYSIS

The performance improvement from the (r− 1)th round to
the rth round is measured by

E
∥
∥wr − w∗∥∥2 = E

∥
∥
∥wr−1 − w∗

∥
∥
∥

2

+ 2E
(

wr−1 − w∗)T
δr−1 + E

∥
∥
∥δr−1

∥
∥
∥

2
(11)

where w∗ denotes the global optimal solution. We need to
upper bound the terms (wr−1−w∗)Tδr−1 and ||δr−1||2 to esti-
mate the improvement that one round provides. First, we use

the updating rule to write

E

[(
wr−1 − w∗)T

δr−1
]

= − α̃

KE

E∑

i=1

K∑

k=1

�fi
(
ŵr

i,k−1
)T

(
wr−1 − w∗).

Assuming that the local objective function fi is also μi-strongly
convex. Then, Lemma 4 (see the Appendix) implies that

�fi
(
ŵr

i,k−1
)T

(
wr−1 − w∗)

≥ fi
(

wr−1
)
− fi

(
w∗)+ μi

4

∥
∥
∥wr−1 − w∗

∥
∥
∥

2

− βi

∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2
.

By defining μ̄ = (1/E)∑E
i=1 μi and β̄ = (1/E)∑E

i=1 βi, we
obtain

E

[(
wr−1 − w∗)T

δr−1
]

≤ −α̃
(

f
(

wr−1
)

− f
(
w∗)+ μ̄

4

∥
∥
∥wr−1 − w∗

∥
∥
∥

2
)

+ α̃β̄ε (12)

where

ε = 1

KE

E∑

i=1

K∑

k=1

∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2

represents the drift of the local model from the current global
model.

A. Averaged Local Model Drift in One Round

Below, we analyze the upper bound of ε. According to the
local updating and Lemma 2, we have

∥
∥
∥ŵr

i,k − wr−1
∥
∥
∥

2 ≤ (1+ a)
∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2

+
(

1+ 1

a

)

α2
l

∥
∥gi

(
ŵr

i,k−1
)∥
∥2
. (13)

Since the local updating is stochastic, and we have defined
the variance from the sampled gradient to the full local gradi-
ent as σ 2, we have E||gi(w)||2 = ||�fi(w)||2 + σ 2, which
in conjunction with (13) leads to an upper bound of the
expectation as

E||ŵr
i,k − wr−1||2 ≤

(

1+ 1

K − 1

)

E||ŵr
i,k−1 − wr−1||2

+ Kα2
l ||�fi

(
ŵr

i,k−1
)||2 + Kα2

l σ
2 (14)

where a = (1/K − 1). To deal with the term �fi(ŵ
r
i,k−1)

in (14), first we apply Lemma 2 to write

∥
∥�fi

(
ŵr

i,k−1
)∥
∥2 ≤ 2

∥
∥
∥�fi

(
ŵr

i,k−1
)− �fi

(
wr−1

)∥
∥
∥

2

+ 2
∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2
.

Next, we use the fact that function fi has Lipschitz continuous
gradient to bound the drift of the local gradient as

∥
∥
∥�fi

(
ŵr

i,k−1
)− �fi

(
wr−1

)∥
∥
∥

2 ≤ β2
i

∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2
.
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It now follows that:

E
∥
∥
∥ŵr

i,k − wr−1
∥
∥
∥

2

≤
(

1+ 1

K − 1
+ 2Kα2

l β
2
i

)

E
∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2

+ 2Kα2
l

∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2 + Kα2
l σ

2.

To upper bound the drift over K local updates, we unroll the
recursion from ŵr

i,0 to ŵr
i,k−1. Since ŵr

i,0 = wr−1, we have

E
∥
∥
∥ŵr

i,K − wr−1
∥
∥
∥

2

≤
K−1∑

k=0

(

1+ 1

K − 1
+ 2Kα2

l β
2
i

)k

×
(

2Kα2
l

∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2 + Kα2
l σ

2
)

which involves a geometric series. This upper bound can be
also written as

E
∥
∥
∥ŵr

i,K − wr−1
∥
∥
∥

2 ≤ q

(

2Kα2
l

∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2 + Kα2
l σ

2
)

where q is a constant with fixed local learning rate αl and
local updating iterations K defined as

q =
1−

(
1+ 1

K−1 + 2Kα2
l β

2
i

)K

1−
(

1+ 1
K−1 + 2Kα2

l β
2
i

) .

Consequently, the average drift over E clients is upper
bounded by

ε ≤ 1

E

E∑

i=1

q

(

2Kα2
l

∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2 + Kα2
l σ

2
)

.

Note that from (9), we upper bound ε as

ε ≤ 8qKα2
l β̂

(
f
(

wr−1
)
− f

(
w∗))+ qKα2

l

(
4B+ σ 2

)
. (15)

B. Global Model Improvement in One Round

By applying Lemma 3, we bound the expectation of
||δr−1||2 as

E

[∥
∥
∥δr−1

∥
∥
∥

2
]

≤
∥
∥
∥
∥
∥

α̃

KE

E∑

i=1

K∑

k=1

�fi
(
ŵr

i,k−1
)
∥
∥
∥
∥
∥

2

+ α̃
2σ 2

KE
(16)

and using Lemma 2, we have

∥
∥
∥
∥
∥

α̃

KE

E∑

i=1

K∑

k=1

�fi
(
ŵr

i,k−1
)
∥
∥
∥
∥
∥

2

≤ 2

∥
∥
∥
∥
∥

α̃

KE

E∑

i=1

K∑

k=1

(
�fi

(
ŵr

i,k−1
)− �fi

(
wr−1

))
∥
∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥
∥

α̃

E

E∑

i=1

�fi

(
wr−1

)
∥
∥
∥
∥
∥

2

. (17)

Then, by Jensen’s inequality and {βi}E1=1 smoothing

∥
∥
∥
∥
∥

α̃

KE

E∑

i=1

K∑

k=1

(
�fi

(
ŵr

i,k−1
)− �fi

(
wr−1

))
∥
∥
∥
∥
∥

2

≤ α̃

KE

E∑

i=1

K∑

k=1

∥
∥
∥�fi

(
ŵr

i,k−1
)− �fi

(
wr−1

)∥
∥
∥

2

≤ α̃

KE

E∑

i=1

K∑

k=1

β2
i

∥
∥
∥ŵr

i,k−1 − wr−1
∥
∥
∥

2 = α̃||β||2ε

where β = {βi}E1=1. Now, using Jensen’s inequality again
and (9), we have

∥
∥
∥
∥
∥

α̃

E

E∑

i=1

�fi

(
wr−1

)
∥
∥
∥
∥
∥

2

≤ α̃
2

E

E∑

i=1

∥
∥
∥�fi

(
wr−1

)∥
∥
∥

2

≤ 4α̃2β̂
(

f
(

wr−1
)
− f

(
w∗))+ 2α̃2B

which leads us to

E

[∥
∥
∥δr−1

∥
∥
∥

2
]

≤ 2α̃||β||2ε + 4α̃2B

+ 8β̂α̃2
(

f
(

wr−1
)
− f

(
w∗))+ α̃

2σ 2

KE
.

Synthesizing the above analysis, the improvement provided by
the proposed technique in one round is estimated by the upper
bound of E[||wr − w∗||2]

E
[∥
∥wr − w∗∥∥2

]
≤

(

1− α̃μ̄
4

)

E
∥
∥
∥wr−1 − w∗

∥
∥
∥

2

+ c2E
(

f
(

wr−1
)
− f

(
w∗))+ 4α̃(c1 + α̃)B+

(

c1 + α̃2

KE

)

σ 2

(18)

where

c1 = qKα2
l

(
β̄ + 2||β||2

)

c2 = 8β̂α̃(α̃ + c1)− α̃.

C. Convergence Analysis in Multiple Rounds

By rearranging the terms in (18), we obtain

E
[
f
(

wr−1
)
− f

(
w∗)] ≤ E

[
1

c2

(

1− α̃μ̄
4

)∥
∥
∥wr−1 − w∗

∥
∥
∥

2

− 1

c2

∥
∥wr − w∗∥∥2

]

+ 4α̃

c2
(c1 + α̃)B+

(

c1 + α̃2

KE

)
σ 2

c2
.

Applying a weighted summation to the above inequality and
letting λr = (1− (μ̄α̃/4))1−r and �R =∑R+1

r=1 λr, we obtain

E

[(

1− α̃μ̄
4

)∥
∥
∥wr−1 − w∗

∥
∥
∥

2 − ∥
∥wr − w∗

∥
∥2

]

=
(

1− α̃μ̄
4

)∥
∥w0 − w∗

∥
∥2

�R
−

(
1− α̃μ̄

4

)−R∥
∥wR+1 − w∗

∥
∥2

�R
.
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(a) (b) (c)

Fig. 3. Advantage of frequency features over different algorithms and different data sets. (a) FedProx with EMNIST. (b) Mime-Lite with EMNIST. (c) FedProx
with CIFAR-100.

By choosing the step size α̃ from the region (0, (4/μ̄)], we
reach the upper bound

E

[(

1− α̃μ̄
4

)∥
∥
∥wr−1 − w∗

∥
∥
∥

2 − ∥
∥wr − w∗

∥
∥2

]

≤
(

1− α̃μ̄
4

)∥
∥w0 − w∗∥∥2

�R
. (19)

If we set the federated training round R ≥ (4/α̃μ̄), we obtain
a lower bound for the summed weights �R in R rounds

�R ≥ 4

(

1− α̃μ̄
4

)−R 1− e−R α̃μ̄
4

μ̄α̃
.

Since (Rμα̃/4) ≥ 1 and e−1 < (2/3)

�R ≥
4
(

1− α̃μ̄
4
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3μα̃

which leads the estimate in (19) to
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and, thus
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∥
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(
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KE

)
σ 2

c2
. (20)

From (20), we conclude that the quality of model wR mea-
sured by its closeness to the optimal w∗ in terms of the mean
E[f (wR)−f (w∗)] is determined by three factors, namely, R: the
number of rounds, B: the average magnitude of local gradients
at global model w∗, and σ 2: the variance from the sampled
gradient to the full local gradient. The upper bound provided
in (20) clearly indicates that model wR is expected to be satis-
factory if R is sufficiently large so as to keep the first term of
the upper bound small, and both B and σ 2 are small to keep
the other two terms of the bound reasonably small as well.

In summary, since the transform-domain features can
increase the similarity among local objective functions,
namely, the landscape of local objective functions tend to be
more similar to each other and the local optimizers get much
closer to each other. Therefore, the drift in the local models

during the federated training procedure can be reduced, which
in turn improves the convergence.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed method with different SOTA
algorithms are examined by applying them to several popu-
lar data sets. First we provide a case study to demonstrate the
advantages of the proposed frequency features in FL compared
with FedProx and Mime-Lite, where the algorithms are imple-
mented with federated-EMNIST and federated-CIFAR-100
data sets. Due to the different complexity of these two data
sets, we have applied different local models in the federated
training.

Next, we verify the usefulness of the proposed method
in various scenarios with a case study via FedAvg. We
proposed various the transform-domain FL schemes based
on FedAvg, i.e., one-dimensional DCT (1D-DCT-FA) and
the combination with time-domain features (1D-CDCT-FA);
two-dimensional DCT (2D-DCT-FA) and the combina-
tion with the time-domain and frequency-domain features
(2D-CDCT-FA); one-dimensional DWT (1D-DWT-FA); and
two-dimensional DWT (2D-DWT-FA). For both DCT and
DWT-based techniques, in addition to the preserve rate there
are several parameters that are adjustable (e.g., the decom-
position levels of DWT) to meet specific requirements in
applications.

A. Advantage of Frequency Features

First, the proposed transform-domain technique was incor-
porated into the FedProx algorithm which behaves practically
the same way as FedAvg except that it includes a proximal
regularization term that prevents clients from drifting too far
from the global model. The test accuracy results in comparison
with the original FedProx and the frequency-feature-enabled
FedProx when applied to the federated EMNIST data set are
shown in Fig. 3(a). For FedProx, the proximal strength param-
eter, which controls the regularization level, was set to 0.1.
The local model used, here, was one simple neural network
with one hidden layer and softmax regression loss, which was
optimized using Adam in updating the local model, where
the learning rate was set to 0.02. For the Adam local opti-
mizer, the decay for tracking previous gradients and their
second moments was set to 0.9 and 0.999, respectively. For
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each iteration at an edge server in the local training proce-
dure, the batch size was set to 20 and there were five local
training epochs in one federated training round. The results
shown in Fig. 3(a) were obtained after four rounds of feder-
ated training, where 0.1-DCT-FedProx and 0.3-DCT-FedProx
are meant to utilize only 10% and 30% of frequency features.
The proposed method was also integrated into the Mime-Lite
algorithm with the same setting (except that the local learn-
ing rate was set to 0.001), and the results obtained are shown
in Fig. 3(b). Clearly, in both cases, the results have demon-
strated the ability of the proposed method to quickly converge
to fairly accurate solutions with 70%–90% reduction of the
input dimensionality.

In addition, the proposed technique was also applied to the
CIFAR-100, a more complex data set in terms of the number
of categories. In this case study, our method also outperforms
the original FedProx. Since there are 100 different classes in
CIFAR-100, a relatively more complex local model known as
one VGG block [33] was employed to track the convergence
trends. As shown in Fig. 3(c), our proposed frequency feature-
enabled FedProx converges faster than the original FedProx
when applied to the CIFAR-100.

B. Case Study With FedAvg

To investigate the diversified data distribution over IoT
devices covered by different edge servers, we divided the
MNIST [34] data sets and allocated them to randomly selected
ten edge servers. The local model applied the one-hidden layer
neural network with softmax loss function. The performance
of the proposed transform-domain FL schemes was compared
with FedAvg over different heterogeneous level of local data
sets to illustrate the advantages and robustness of the proposed
schemes over the FedAvg in various IoT application scenarios.

For local training, the batch size was set as 0.5 of the
local training data set and each edge server only conducted
one epoch in each round and there were 200 training rounds
for all following experiments. In this case study, we applied
SGD algorithm as the local training optimizer. For all DCT-FA
except for the measurement of the impact of different preserve
rates, the preserve rate was set to 0.2. For all DWT-FA except
for the measurement of the impact of different decomposition
levels, we applied the first-level DWT into the FL procedure.
The train–test rate which means the percentage of training data
size in the test data size was set to 10 except the experiment
measures the impact of the train–test rate.

1) Simulation Results and Analysis With IID Local Data
Sets: First, we measured the performance of the DCT
transform-domain FL. Fig. 4 shows the test accuracy of
FedAvg, 1D-DCT-FA, and 2D-DCT-FA with the increas-
ing preserve rate. From the results shown in Fig. 4(a), the
performance of both 1D-DCT-FA and 2D-DCT-FA is improved
rapidly with the increasing preserve rate at the beginning.
When the preserve rate reaches 0.05, 2D-DCT-FA achieved
good performance and the improvement of the performance
slows down compared to that with the original features
when the preserve rate is 0.1. When the preserve rate is
smaller than 1, 1D-DCT-FA has much worse performance

(a) (b)

Fig. 4. Performance of 1D-DCT and 2D-DCT-based FL of different preserve
rate with IID local data sets. (a) Test accuracy. (b) Overall training time.

(a) (b)

Fig. 5. Performance of 1D-CDCT and 2D-CDCT-based FL of different
preserve rates with IID local data sets. (a) Test accuracy. (b) Overall training
time.

than that with 2D-DCT-FA. We conclude that 2D-DCT-FA
needs less information, i.e., features in the frequency domain,
to obtain a comparable performance. The performance of
both 1D-DCT-FA and 2D-DCT-FA are comparative to the
performance of FedAvg after the preserve rate achieving 0.1.
The advantages of 1D-DCT-FA and 2D-DCT-FA are shown
in Fig. 4(b). Both 1D-DCT-FA and 2D-DCT-FA need much
less overall training time to achieve a comparable performance
which is shown to be promising property with time-sensitive
IoT applications.

Furthermore, when combining the time-domain features and
the frequency-domain ones, the test accuracy achieved for
both 1D-CDCT-FA and 2D-CDCT-FA is much better than that
of FedAvg even with a very low preserve rate as shown in
Fig. 5(a) where 1D-CDCT-FA improves 6% and 2D-CDCT-FA
improves 7% of the test accuracy compared with FedAvg. It
also shows that 2D-CDCT-FA needs less information to con-
verge to a better test accuracy compared with 1D-CDCT-FA.
Furthermore, the overall training time of both 1D-CDCT-FA
and 2D-CDCT-FA are also comparative to the overall train-
ing time consumed by FedAvg with a low preserve rate as
shown in Fig. 5(b). According to the improvement of accu-
racy performance, this additional overall training time cost
is quite tolerable. We conclude that when combining a few
frequency-domain features to the time-domain features, the
testing performance is greatly improved.

As illustrated in Fig. 6, we measured the performance
of 1D-DWT-FA and 2D-DWT-FA with different decomposi-
tion levels and we extracted the approximation information
at each level for training. There were less information at
a higher decomposition level. The results from Fig. 6(a)
show that both 1D-DWT-FA and 2D-DWT-FA achieve their
best performance with first-level decomposition, and with
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(a) (b)

Fig. 6. Performance of 1D-DWT and 2D-DWT-based FL of approximation
information in different decomposition levels with IID local data sets. (a) Test
accuracy. (b) Overall training time.

(a) (b)

Fig. 7. Performance comparison of different participation scenarios with IID
local data sets. (a) Rate of train–test data size. (b) Aggregated local model
number.

increasing decomposition levels, their performance both
deteriorate. However, the performance of 1D-DWT-FA is more
robust with the increasing decomposition levels compared
with 2D-DWT-FA. Even in the third level decomposition
where much less information is preserved, the performance of
1D-DWT-FA is still better than that of FedAvg with much less
overall training time as shown in Fig. 6(b). It is because the
approximation information of 1D-DWT-FA is a little more than
that of 2D-DWT-FA at the same level. As shown in Fig. 6(b),
2D-DWT-FA needs a little more overall training time than
that of 1D-DWT-FA. Both of them are more efficient than the
FedAvg with all decomposition levels.

To compare the performance of different transform-domain
FL schemes, we measured the test accuracy over 200 training
runs with different training data sizes. In this experiment, the
size of the test data sets was the same, and we controlled the
size of the training data by the train–test rate. As illustrated
in Fig. 7(a), when the train–test rate is 0.1, the performance
of 1D-DCT-FA, 1D-DWT-FA, and 1D-CDCT-FA are all better
than that of FedAvg. This limited training data size setting is
commonly occurring in real IoT applications where each IoT
device observes very limited data samples. This result shows
the advantage of the transform-domain FL to deal with the
limited local training data sets.

In real FL applications over the edge network, it is very
hard to gather sufficient qualified edge servers for the spe-
cific application in each training round. Transform-domain FL
still achieves promising performance with very limited edge
servers participating in each training round. To evaluate the
advantages of transform-domain FL when encountering the sit-
uation where both available edge servers and the local training
data samples were limited, we set the number of local training

(a) (b)

Fig. 8. Performance of the FL of different optimizers with IID local data
sets. (a) Test accuracy. (b) Overall training time.

(a) (b)

Fig. 9. Performance of 1D-DCT and 2D-DCT-based FL of different preserve
rate with non-IID local data sets. (a) Test accuracy. (b) Overall training time.

samples for each digit class as 50, and there were 200 samples
in each class for testing. In each federated training round, we
randomly selected 2, 4, 6, or 8 edge servers to conduct the
local model aggregation which perfectly simulated the sce-
nario of many real IoT applications. The results in Fig. 7(b)
show that with increasing qualified edge servers participating
in the federated training, the performance of all schemes are
improved, and the transform-domain FL schemes always show
better performance with limited participating edge servers in
each federated training round.

We also have checked the performance of transform-domain
FL schemes with different optimizer in the local training.
The results are shown in Fig. 8 where the performance with
optimizer SGD is quite similar with the performance with
optimizer ASGD in both test accuracy achieved after 200 train-
ing rounds and the consumed overall training time. However,
the performance with optimizer Adam is not always good
as the others. It is due to that both SGD and ASGD apply
only the gradients from the current round to update the local
model parameters, however, Adam applies the momentum of
the gradients which needs to considering the historical gra-
dients to adjust the current local parameter. This property
becomes a drawback in the FL framework due to the local
model aggregation procedure.

2) Simulation Results and Analysis With Non-IID Local
Data Sets: Fig. 9 shows the test accuracy of FedAvg,
1D-DCT-FA, and 2D-DCT-FA with increasing preserve rate
over the non-IID local data sets with heterogeneous level
0.1. Compared with the results over the IID local data sets
shown in Fig. 4, the test accuracy of the FedAvg shown in
Fig. 9(a) has been reduced due to the heterogeneous local
data sets. However, the performance of both 1D-DCT-FA and
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(a) (b)

Fig. 10. Performance of 1D-CDCT and 2D-CDCT-based FL of different
preserve rates with non-IID local data sets. (a) Test accuracy. (b) Overall
training time.

2D-DCT-FA are improved rapidly with the increasing pre-
serve rate at the beginning and 2D-DCT-FA will out perform
FedAvg when the preserve rate reaches 0.05 which means that
2D-DCT-FA needs only 5% features of that for FedAvg to
achieve a better test accuracy. With the increasing preserve
rate, the performance of 2D-DCT-FA converges much faster
than that of 1D-DCT-FA where 1D-DCT-FA achieves better
performance than FedAvg until preserve rate reaches 0.1 as
illustrated in Fig. 9(a). Both 1D-DCT-FA and 2D-DCT-FA
need much less overall training time to achieve a better
performance over the non-IID local data sets where the over-
all training time varies very little with increasing preserver
rate from 0.01 to 0.1. More interestingly, 2D-DCT-FA costs
less overall training time compared with both FedAvg and
1D-DCT-FA as shown in Fig. 9(b). Both 1D-DCT-FA and
2D-DCT-FA achieve better performance with only 10% fea-
tures compared with that of FedAvg at the same time with
much less overall training time.

With non-IID local data sets, the schemes of combining
the time-domain features and the frequency-domain ones, i.e.,
1D-CDCT-FA and 2D-CDCT-FA, not only achieve much bet-
ter test accuracy than that of FedAvg, but also less overall
training time when the preserve rate is low as illustrated in
Fig. 10. With low preserve rate 0.01, both 1D-CDCT-FA and
2D-CDCT-FA combine very limited frequency-domain fea-
tures with the time domain features achieve more than 10%
test accuracy and there is no compromise in the overall train-
ing time. When the preserve rate is 0.01, the performance
of 1D-CDCT-FA is little better than that of 2D-CDCT-FA,
but 2D-CDCT-FA has more advantage in the overall training
time. The test accuracy of 2D-CDCT-FA is greatly improved
when the preserve rate achieves 0.05 which is much better than
that of 1D-CDCT-FA. Furthermore, when the preserve rate
is no larger than 0.1, both 1D-CDCT-FA and 2D-CDCT-FA
achieve promising overall training time compared with
FedAvg.

Both 1D-DWT-FA and 2D-DWT-FA achieve much efficient
performance, i.e., higher test accuracy and lower overall train-
ing time, when the decomposition level is no larger than 2 with
non-IID local data sets as illustrated in Fig. 11. With increas-
ing decomposition levels, the test accuracy achieved by both
1D-DWT-FA and 2D-DWT-FA is reduced due to the decreas-
ing information reserved as shown in Fig. 11(a). But there
is advantage on the overall training time with higher decom-
position level as illustrated in Fig. 11(b). The 2D-DWT-FA

(a) (b)

Fig. 11. Performance of 1D-DWT and 2D-DWT-based FL of approximation
information in different decomposition levels with non-IID local data sets.
(a) Test accuracy. (b) Overall training time.

(a) (b)

Fig. 12. Performance comparison of different participation scenarios with
non-IID local data sets. (a) Rate of train–test data size. (b) Aggregated local
model number.

outperforms 1D-DWT-FA with first-level decomposition, how-
ever, the performance of 2D-DWT-FA declines rapidly with the
increasing decomposition levels compared with 1D-DWT-FA.
It is due to that the approximation information extracted from
2D-DWT-FA is much less than that of 1D-DWT-FA. With
first-level decomposition, there is still sufficient approxima-
tion details reserved by 2D-DWT-FA which ensures the best
performance compared with the other two schemes. However,
when the decomposition level increases to 3, there is too
less information of the sample features left in 2D-DWT-FA,
the performance will be greatly deteriorated. As illustrated
in Fig. 11(b), although there are advantages in overall train-
ing time with higher decomposition level, the benefit is
not cost-effective with respect to the deterioration in test
accuracy.

In the experiment with different training data sizes over
non-IID local data sets, we compared the performance of
2D-DCT-FA, 1D-DWT-FA, 2D-CDCT-FA with the FedAvg.
The size of the test data sets were the same for each train–
test size rate. As illustrated in Fig. 12(a), the performance of
the transform-domain FL schemes all outperform FedAvg with
limited training data size. Especially, 2D-CDCT-FA achieves
very high test accuracy when train–test size rate is small com-
pared with others. As illustrated in Fig. 12(a), the test accuracy
for 2D-CDCT-FA achieves near 90% with very small local
training data sets, i.e., train–test size rate is 0.1, where the
FedAvg can not even get close to the test accuracy of 80%
with the same local training data sets setting. Furthermore, for
the medium local training data sets with train–test size rate as
1.0, 2D-DCT-FA achieves very high test accuracy near 95%,
however, the test accuracy for FedAvg is still around 80%.
This experiment result shows the benefit of transform-domain
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(a) (b)

Fig. 13. Performance of the FL of different optimizers with non-IID local
data sets. (a) Test accuracy. (b) Overall training time.

(a) (b)

Fig. 14. Performance of 1D-DCT and 2D-DCT-based FL of different preserve
rate with non-overlapping local data sets. (a) Test accuracy. (b) Overall training
time.

FL also achieves very promising results with the limited and
heterogeneous local training data sets.

Fig. 12(b) shows the advantages of transform-domain FL
schemes over the FedAvg with very limited edge servers par-
ticipating in each training round over the non-IID local data.
The 2D-DCT-FA easily achieves the test accuracy around 95%
when their are only 4 edge servers participating into the FL in
each round where FedAvg only achieves the test accuracy less
than 60%. Furthermore, both 2D-DCT-FA and 1D-DWT-FA
achieve the test accuracy near 90% when the number of edge
servers participating in each training round is more than 4. The
performance of transform-domain FL schemes is very promis-
ing with limited participating edge servers in each federated
training round over the non-IID local data sets.

As illustrated in Fig. 13, the transform-domain FL schemes
all achieve better performance than the FedAvg with different
optimizers over the non-IID local data sets. With heteroge-
neous local data sets, the performance of optimizer Adam on
the test accuracy is a little better than both SGD and ASGD
with respect to FedAVg, 2D-DCT-FA, and 1D-DWT-FA.
Although, the performance of 2D-CDCT-FA with Adam is a
little worse than the other two optimizers, it is still the best
among the other schemes. Both 2D-DCT-FA and 1D-DWT-FA
still achieve promising overall training time among all the
schemes over different optimizers, and 2D-CDCT-FA also
achieves comparable efficiency with FedAvg in overall train-
ing time. Furthermore, it is also observed that the impact
of different optimizers over the non-IID local data sets on
the transform-domain FL is very little compared with that of
FedAvg in both test accuracy and overall training time.

3) Simulation Results and Analysis With Nonoverlap Local
Data Sets: Fig. 14(a) shows the test accuracy of FedAvg,
1D-DCT-FA, and 2D-DCT-FA with increasing preserve rate

(a) (b)

Fig. 15. Performance of 1D-CDCT and 2D-CDCT-based FL of different pre-
serve rates with non-overlapping local data sets. (a) Test accuracy. (b) Overall
training time.

over the nonoverlap local data sets. When the preserve
rate is very small as 0.01, 1D-DCT-FA slightly outperforms
2D-DCT-FA, however, both of them can not achieve the
same performance of FedAvg with test accuracy 70%. When
the preserve rate increases to 0.05, which is still small, the
performance of 2D-DCT-FA is greatly improved to achieve test
accuracy near 85%, however, the performance of 1D-DCT-FA
is still very poor with test accuracy around 55%. With
increasing preserve rate, the performance of 1D-DCT-FA will
be continuously improved, but it only achieves the same
performance as 2D-DCT-FA with maximum preserve rate 1.0.
Furthermore, 2D-DCT-FA achieves test accuracy of 90% with
preserve rate 0.1 which is much efficient compared with
that of FedAvg. As shown in Fig. 14(b), when the preserve
rate is no more than 0.1, the overall training time of both
1D-DCT-FA and 2D-DCT-FA are much smaller than that of
FedAvg. Furthermore, the impact of different preserve rates on
the overall training time of both 1D-DCT-FA and 2D-DCT-FA
is very limited. When set the preserve rate as 0.1, it achieves
much better performance on the test accuracy but also remain
small cost on the overall training time.

Both 1D-CDCT-FA and 2D-CDCT-FA achieve far better
performance compared with FedAvg over the nonoverlap local
data sets. As shown in Fig. 15(a), both 1D-CDCT-FA and
2D-CDCT-FA improve more than 20% of the test accu-
racy compared with FedAvg. When the preserve rate is
0.01, the performance of 1D-CDCT-FA maybe a little bet-
ter than that of 2D-CDCT-FA, however, the improvement of
2D-CDCT-FA is faster than that of 1D-CDCT-FA with the
increasing preserve rate. When the preserve rate reaches 0.05,
2D-CDCT-FA already achieves test accuracy over 95% where
the 1D-CDCT-FA can only achieve the same test accuracy
with the maximum preserve rate 1.0. Furthermore, the overall
training time of both 1D-CDCT-FA and 2D-CDCT-FA also are
comparative to that of FedAvg when preserve rate is no more
than 0.01 as shown in Fig. 15(b). It shows that when com-
bining a few frequency-domain features to the time-domain
features, the testing performance is greatly improved over the
nonoverlap local data sets.

When we extract the approximation information at dif-
ferent decomposition levels for training, the performance of
both 1D-DWT-FA and 2D-DWT-FA can outperform FedAvg
when the decomposition level is no greater than 2 over the
nonoverlap local data sets as illustrated in Fig. 16(a). However,
the performance of 2D-DWT-FA becomes much worse when
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(a) (b)

Fig. 16. Performance of 1D-DWT and 2D-DWT-based FL of approximation
information in different decomposition levels with non-overlapping local data
sets. (a) Test accuracy. (b) Overall training time.

(a) (b)

Fig. 17. Performance of the FL of different optimizers with non-overlapping
local data sets. (a) Test accuracy. (b) Overall training time.

the decomposition level reaches 3 due to less information
at a higher decomposition level. Both 1D-DWT-FA and
2D-DWT-FA achieve their best performance with first-level
decomposition. With the increasing decomposition level, the
performance of 1D-DWT-FA will be slightly deteriorated com-
pared with the large test accuracy reduction of 2D-DWT-FA.
Although, the performance of 1D-DWT-FA is better than
2D-DWT-FA on test accuracy, 2D-DWT-FA have advantages
on the overall training time and both of them outperform the
FedAvg as shown in Fig. 16(b). Furthermore, the 1D-DWT-FA
achieves the test accuracy near 90% in the third level decom-
position with very little overall training time which is much
efficient than that of FedAvg.

As shown in Fig. 17(a), the performance of applying opti-
mizer Adam becomes much worse with nonoverlap local data
sets for all FL schemes, and the transform-domain FL schemes
achieve much better performance on test accuracy with opti-
mizers SGD and ASGD, which are 20% higher than that of
FedAvg. The performance deterioration with Adam over the
nonoverlap local data sets is due to the property of Adam con-
sidering the historical local gradients to adjust the current local
parameter which is highly unsuitable for the scenario where
the local data sets are totally different with each other. The
historical local gradient information can not be used to adjust
the model parameters which try to learn the knowledge over all
local data sets. Furthermore, due to the sophisticated updating
mechanism, the optimizer Adam also does not have advantages
on the overall training time as shown in Fig. 17(b), the overall
training time of both FedAvg and 2D-CDCT-FA with Adam
grow rapidly compared with optimizers SGD and ASGD, how-
ever, the overall training time growth of 2D-DCT-FA and
1D-DWT-FA are very slow.

Fig. 18. Communication advantages.

As expected, transform-domain FL also provides consid-
erable help in alleviating the overall communication burden
among IoT devices and edge servers. As shown in Fig. 18,
where the communication burden is defined as the amount of
sample features needed to be transmitted from IoT devices
to edge servers where each feature value needs one unit of
communication resources. When we set the preserve rate of
DCT-FA as 0.1, it only needs to transmit 10% features com-
pared with that of the FedAvg applying the original sample
features. From Fig. 18, we observe that DWT-FA also vastly
relieves the communication burden compared with FedAvg
due to the signal compression ability of the Haar wavelets.
In this experiment, we apply the first-level DWT decomposi-
tion which holds the largest number of approximation features
but still causing much less communication burden compared
with that of FedAvg. In consideration of time-domain and
transform-domain features combination in CDCT-FA, there is
no extra communication burden for the IoT devices, since the
feature transformation and combination is conducted in edge
servers.

VII. CONCLUSION

In this article, based on the application scenarios of edge-
enabled IoT intelligence, we proposed transform-domain FL
algorithms to improve the federated training efficiency among
multiple edge servers, which provides promising applica-
tion service for various IoT devices with limited local data
and resources. Since the transform-domain features provide
sufficient information of the original data when reducing
the dimensionality, the satisfactory convergence is main-
tained. Furthermore, the compressed frequency-domain fea-
tures increases the similarity among different local objectives,
which is important to address the heterogeneous challenges
facing FL. Thus, the proposed transform-domain technique
leads to faster convergence and reduced communication cost.
The performance of the proposed method was also ana-
lyzed from a series of experiments and demonstrated its
advantages over the SOTA FL algorithms with popular
data sets.

APPENDIX

Lemma 1: Let f (x) be a β-smooth convex function, then

(�f (x)− �f (y))T(x− y) ≥ 1

2β
‖�f (x)− �f (y)‖2. (21)

Proof: Due to the quadratic upper bound and the linear
lower bound of the β-smooth convex function, we obtain the
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inequality as

f (x)− f (y) = f (x)− f (z)+ f (z)− f (y)

≤ �f (x)T(x− z)+ �f (y)T(z− y)+ β
2
||z− y||2

= �f (x)T(x− y)+ (�f (x)− �f (y))T(y− z)

+ β

2
||z− y||2.

If we define

z = y− 1

β
(�f (y)− �f (x))

then

(�f (x)− �f (y))T(y− z) = − 1

β
‖�f (x)− �f (y)‖2

β

2
||z− y||2 = 1

2β
‖�f (x)− �f (y)‖2

and, hence

f (x)− f (y) ≤ �f (x)T(x− y)− 1

2β
||�f (x)− �f (y)||2

which leads to

f (y)− f (x)− �f (x)T(y− x) ≥ 1

2β
||�f (x)− �f (y)||2.

Using the linear bound of f (x), we have

�f (y)T(x− y) ≤ f (x)− f (y)

≤ �f (x)T(x− y)− 1

2β
||�f (x)− �f (y)||2

which leads to (21).
Lemma 2: For any positive number a, we get the relaxed

Triangle inequalities as

||x+ y||2 ≤ (1+ a)||x||2 +
(

1+ 1

a

)

||y||2 (22)

2
(
||x||2 + ||y||2

)
≥ ||x+ y||2. (23)

Proof: To get the relaxed Triangle inequality in (22), we
follow the derivation as

||x+ y||2 = (1+ a)||x||2 +
(

1+ 1

a

)

||y||2 −
∥
∥
∥
∥
√

ax+ 1√
a

y

∥
∥
∥
∥

2

≤ (1+ a)||x||2 +
(

1+ 1

a

)

||y||2.

When we set a = 1, we can obtain the result in (23).
Lemma 3: Let σ 2 be an upper bound of the variance of a

sequence of random vectors {vt}Tt=1, then

E

⎡

⎣

∥
∥
∥
∥
∥

T∑

t=1

vt

∥
∥
∥
∥
∥

2⎤

⎦ ≤
∥
∥
∥
∥
∥

T∑

t=1

E[vt]

∥
∥
∥
∥
∥

2

+ Tσ 2. (24)

Proof: The variance of sequence {vt}Tt=1 is defined by

E
[
‖vt − E[vt]‖2

]
= E

[
||vt||2

]
− 2||E[vt]||2

+ ||E[vt]||2 = E
[
||vt||2

]
− ||E[vt]||2.

Similarly,

E

⎡

⎣

∥
∥
∥
∥
∥

T∑

t=1

(vt − E[vt])

∥
∥
∥
∥
∥

2⎤

⎦ = E

⎡

⎣

∥
∥
∥
∥
∥

T∑

t=1

vt

∥
∥
∥
∥
∥

2⎤

⎦−
∥
∥
∥
∥
∥

T∑

t=1

E[vt]

∥
∥
∥
∥
∥

2

.

Using Jensen’s inequality, we have
∥
∥
∥
∥
∥

T∑

t=1

(vt − E[vt])

∥
∥
∥
∥
∥

2

≤
T∑

t=1

‖vt − E[vt]‖2

and the linearity of the expectation gives

E

⎡

⎣

∥
∥
∥
∥
∥

T∑

t=1

(vt − E[vt])

∥
∥
∥
∥
∥

2⎤

⎦ ≤
T∑

t=1

E
[
‖vt − E[vt]‖2

]
≤ Tσ 2

which immediately leads to (24).
Lemma 4: If f (x) is a β-smooth and μ-strongly convex

function, thus, admitting

f (z) ≤ f (x)+ �f (x)T(z− x)+ β
2
||z− x||2

f (y) ≥ f (x)+ �f (x)T(y− x)+ μ
2
||y− x||2

then

�f (x)T(z− y) ≥ f (z)− f (y)+ μ
4
||y− z||2 − β||z− x||2. (25)

Proof: Using the Cauchy–Schwarz inequality, we have

�f (x)T(z− y) ≥ f (z)− f (y)+ μ
2
||y− x||2 − β

2
||z− x||2

which in conjunction with the upper and lower bounds with
β ≥ μ, we obtain (25).
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