template<class T> class B { /* ... */ }; template<class T> class D : public B<T> { /* ... */ }; void f(void*); void f(B<int>*); void g(D<int>* p, D<char>* pp, D<double>* ppp) { f(p); // instantiation of D<int> required: call f(B<int>*) B<char>* q = pp; // instantiation of D<char> required: convert D<char>* to B<char>* delete ppp; // instantiation of D<double> required }— end example
template<class T> class X; X<char> ch; // error: incomplete type X<char>— end example
template<class T> struct C { void f() { T x; } void g() = delete; }; C<void> c; // OK, definition of C<void>::f is not instantiated at this point template<> void C<int>::g() { } // error: redefinition of C<int>::g— end example
template<class T, class U> struct Outer { template<class X, class Y> struct Inner; template<class Y> struct Inner<T, Y>; // #1a template<class Y> struct Inner<T, Y> { }; // #1b; OK: valid redeclaration of #1a template<class Y> struct Inner<U, Y> { }; // #2 }; Outer<int, int> outer; // error at #2
template<typename T> struct Friendly { template<typename U> friend int f(U) { return sizeof(T); } }; Friendly<char> fc; Friendly<float> ff; // error: produces second definition of f(U)— end example
template<class T> struct Z { void f(); void g(); }; void h() { Z<int> a; // instantiation of class Z<int> required Z<char>* p; // instantiation of class Z<char> not required Z<double>* q; // instantiation of class Z<double> not required a.f(); // instantiation of Z<int>::f() required p->g(); // instantiation of class Z<char> required, and // instantiation of Z<char>::g() required }
template<typename T> constexpr int f() { return T::value; } template<bool B, typename T> void g(decltype(B ? f<T>() : 0)); template<bool B, typename T> void g(...); template<bool B, typename T> void h(decltype(int{B ? f<T>() : 0})); template<bool B, typename T> void h(...); void x() { g<false, int>(0); // OK, B ? f<T>() : 0 is not potentially constant evaluated h<false, int>(0); // error, instantiates f<int> even though B evaluates to false and // list-initialization of int from int cannot be narrowing }— end example
template <class T> struct S { operator int(); }; void f(int); void f(S<int>&); void f(S<float>); void g(S<int>& sr) { f(sr); // instantiation of S<int> allowed but not required // instantiation of S<float> allowed but not required };— end example
namespace N { template<class T> class List { public: T* get(); }; } template<class K, class V> class Map { public: N::List<V> lt; V get(K); }; void g(Map<const char*,int>& m) { int i = m.get("Nicholas"); }
template<class T> void f(T x, T y = ydef(T()), T z = zdef(T())); class A { }; A zdef(A); void g(A a, A b, A c) { f(a, b, c); // no default argument instantiation f(a, b); // default argument z = zdef(T()) instantiated f(a); // error: ydef is not declared }— end example
template<class T> class X { X<T>* p; // OK X<T*> a; // implicit generation of X<T> requires // the implicit instantiation of X<T*> which requires // the implicit instantiation of X<T**> which … };— end example
template<typename T> concept C = sizeof(T) > 2; template<typename T> concept D = C<T> && sizeof(T) > 4; template<typename T> struct S { S() requires C<T> { } // #1 S() requires D<T> { } // #2 }; S<char> s1; // error: no matching constructor S<char[8]> s2; // OK, calls #2
template<typename T> struct S1 { template<typename U> requires false struct Inner1; // ill-formed, no diagnostic required }; template<typename T> struct S2 { template<typename U> requires (sizeof(T[-(int)sizeof(T)]) > 1) struct Inner2; // ill-formed, no diagnostic required };