lambda-capture: capture-default capture-list capture-default , capture-list
capture-default: & =
capture-list: capture ... capture-list , capture ...
capture: simple-capture init-capture
simple-capture: identifier & identifier this * this
init-capture: identifier initializer & identifier initializer
struct S2 { void f(int i); }; void S2::f(int i) { [&, i]{ }; // OK [&, &i]{ }; // error: i preceded by & when & is the default [=, *this]{ }; // OK [=, this]{ }; // error: this when = is the default [i, i]{ }; // error: i repeated [this, *this]{ }; // error: this appears twice }
void f() {
int x = 0;
auto g = [x](int x) { return 0; } // error: parameter and simple-capture have the same name
}
int x = 4; auto y = [&r = x, x = x+1]()->int { r += 2; return x+2; }(); // Updates ::x to 6, and initializes y to 7. auto z = [a = 42](int a) { return 1; } // error: parameter and local variable have the same name
void f(int, const int (&)[2] = {}) { } // #1 void f(const int&, const int (&)[1]) { } // #2 void test() { const int x = 17; auto g = [](auto a) { f(x); // OK: calls #1, does not capture x }; auto g2 = [=](auto a) { int selector[sizeof(a) == 1 ? 1 : 2]{}; f(x, selector); // OK: is a dependent expression, so captures x }; }
void f1(int i) { int const N = 20; auto m1 = [=]{ int const M = 30; auto m2 = [i]{ int x[N][M]; // OK: N and M are not odr-used x[0][0] = i; // OK: i is explicitly captured by m2 and implicitly captured by m1 }; }; struct s1 { int f; void work(int n) { int m = n*n; int j = 40; auto m3 = [this,m] { auto m4 = [&,j] { // error: j not captured by m3 int x = n; // error: n implicitly captured by m4 but not captured by m3 x += m; // OK: m implicitly captured by m4 and explicitly captured by m3 x += i; // error: i is outside of the reaching scope x += f; // OK: this captured implicitly by m4 and explicitly by m3 }; }; } }; } struct s2 { double ohseven = .007; auto f() { return [this] { return [*this] { return ohseven; // OK } }(); } auto g() { return [] { return [*this] { }; // error: *this not captured by outer lambda-expression }(); } };
void f2() { int i = 1; void g1(int = ([i]{ return i; })()); // ill-formed void g2(int = ([i]{ return 0; })()); // ill-formed void g3(int = ([=]{ return i; })()); // ill-formed void g4(int = ([=]{ return 0; })()); // OK void g5(int = ([]{ return sizeof i; })()); // OK }
void f(const int*); void g() { const int N = 10; [=] { int arr[N]; // OK: not an odr-use, refers to automatic variable f(&N); // OK: causes N to be captured; &N points to // the corresponding member of the closure type }; } auto h(int &r) { return [&] { ++r; // Valid after h returns if the lifetime of the // object to which r is bound has not ended }; }
// The inner closure type must be a literal type regardless of how reference captures are represented.
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);
int a = 1, b = 1, c = 1; auto m1 = [a, &b, &c]() mutable { auto m2 = [a, b, &c]() mutable { std::cout << a << b << c; a = 4; b = 4; c = 4; }; a = 3; b = 3; c = 3; m2(); }; a = 2; b = 2; c = 2; m1(); std::cout << a << b << c;
void f3() { float x, &r = x; [=] { // x and r are not captured (appearance in a decltype operand is not an odr-use) decltype(x) y1; // y1 has type float decltype((x)) y2 = y1; // y2 has type float const& because this lambda is not mutable and x is an lvalue decltype(r) r1 = y1; // r1 has type float& (transformation not considered) decltype((r)) r2 = y2; // r2 has type float const& }; }
template<class... Args> void f(Args... args) { auto lm = [&, args...] { return g(args...); }; lm(); }